Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padua, Italy.
Br J Ophthalmol. 2010 May;94(5):643-7. doi: 10.1136/bjo.2009.166561.
BACKGROUND/AIMS A computer program for the automatic estimation of endothelium morphometric parameters (cell density, pleomorphism, polymegethism) in alizarine red-stained images is presented and evaluated. METHODS Images of corneal endothelium from 30 porcine eyes stained with alizarine red were acquired with an optical microscope and saved as grey-level digital images. Each image was first pre-processed for luminosity correction and contrast enhancement. An artificial neural network was used to classify all pixels as cell contour or cell body pixels. The segmented cell contours were then used to obtain estimates of morphometric parameters. The central area was assessed and the mean area per cornea was 0.54+/-0.07 mm(2). The whole system was implemented as a computer program using the Matlab language. Estimated parameters were compared with the corresponding values derived from manual contour detection on the same images used for the automatic estimation. RESULTS For the 30 images in our dataset, the mean differences for automatic versus manual parameters were -12+/-52 (range -103 to +145) cells/mm(2) for density, 0.5+/-2.6% (range -5.6 to +5.6%) for pleomorphism and -0.7+/-1.9% (range -4.1 to +2.8%) for polymegethism. CONCLUSION The evaluation of the automatic system on 30 images from porcine eyes confirmed its ability to estimate reliably morphometric parameters with respect to parameter values derived by manual analysis.
背景/目的:本文提出并评估了一种用于自动估计茜素红染色图像中内皮细胞形态计量参数(细胞密度、多形性、多核性)的计算机程序。方法:使用光学显微镜获取 30 只猪眼茜素红染色的角膜内皮图像,并保存为灰度数字图像。每个图像首先进行亮度校正和对比度增强的预处理。然后使用人工神经网络对所有像素进行分类,分为细胞轮廓或细胞体像素。分割后的细胞轮廓用于获得形态计量参数的估计值。评估中央区域,平均每只角膜面积为 0.54+/-0.07mm(2)。整个系统使用 Matlab 语言实现为计算机程序。估计的参数与用于自动估计的相同图像的手动轮廓检测得出的相应值进行比较。结果:在我们的数据集的 30 张图像中,自动与手动参数之间的平均差异为密度-12+/-52(范围-103 至+145)个细胞/mm(2),多形性 0.5+/-2.6%(范围-5.6%至+5.6%),多核性-0.7+/-1.9%(范围-4.1%至+2.8%)。结论:对 30 张来自猪眼的图像进行自动系统评估,证实了其能够可靠地估计形态计量参数,与手动分析得出的参数值相当。