Department of Experimental and Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.
Circ Res. 2010 Jul 9;107(1):35-44. doi: 10.1161/CIRCRESAHA.109.211458. Epub 2010 May 6.
Tissue engineering may provide advanced in vitro models for drug testing and, in combination with recent induced pluripotent stem cell technology, disease modeling, but available techniques are unsuitable for higher throughput.
Here, we present a new miniaturized and automated method based on engineered heart tissue (EHT).
Neonatal rat heart cells are mixed with fibrinogen/Matrigel plus thrombin and pipetted into rectangular casting molds in which two flexible silicone posts are positioned from above. Contractile activity is monitored video-optically by a camera and evaluated by a custom-made software program. Fibrin-based mini-EHTs (FBMEs) (150 microL, 600 000 cells) were transferred from molds to a standard 24-well plate two hours after casting. Over time FBMEs condensed from a 12x3x3 mm gel to a muscle strip of 8 mm length and, depending on conditions, 0.2 to 1.3 mm diameter. After 8 to 10 days, FBMEs started to rhythmically deflect the posts. Post properties and the extent of post deflection allowed calculation of rate, force (0.1 to 0.3 mN), and kinetics which was validated in organ baths experiments. FBMEs exhibited a well-developed, longitudinally aligned actinin-positive cardiac muscle network and lectin-positive vascular structures interspersed homogeneously throughout the construct. Analysis of a large series of FBME (n=192) revealed high yield and reproducibility and stability for weeks. Chromanol, quinidine, and erythromycin exerted concentration-dependent increases in relaxation time, doxorubicin decreases in contractile force.
We developed a simple technique to construct large series of EHT and automatically evaluate contractile activity. The method shall be useful for drug screening and disease modeling.
组织工程学可能为药物测试提供先进的体外模型,并且与最近的诱导多能干细胞技术相结合,可以进行疾病建模,但是现有的技术不适合高通量应用。
在此,我们提出了一种基于工程心脏组织(EHT)的新型微型化和自动化方法。
将新生大鼠心脏细胞与纤维蛋白原/Matrigel 加凝血酶混合,并通过移液管将其吸入上方有两个柔性硅树脂柱的矩形铸模中。通过相机进行视频光学监测收缩活性,并通过定制的软件程序进行评估。纤维蛋白基微型 EHT(FBME)(150 μL,60 万细胞)在铸造后两小时从模具转移到标准的 24 孔板中。随着时间的推移,FBME 从 12x3x3mm 的凝胶凝结成 8mm 长的肌条,并且根据条件,直径为 0.2 至 1.3mm。在 8 至 10 天后,FBME 开始有节奏地使柱子偏斜。柱子的特性和柱子偏斜的程度允许计算速度、力(0.1 至 0.3mN)和动力学,这些在器官浴实验中得到了验证。FBME 表现出发育良好的、沿长轴排列的肌动蛋白阳性心肌网络和均匀分布在整个构建体中的凝集素阳性血管结构。对大量 FBME(n=192)的分析表明,该方法具有高产量、可重复性和数周的稳定性。色满醇、奎尼丁和红霉素使松弛时间呈浓度依赖性增加,阿霉素使收缩力降低。
我们开发了一种构建大量 EHT 并自动评估收缩活性的简单技术。该方法将有助于药物筛选和疾病建模。