Suppr超能文献

钯催化γ-亚甲基-δ-戊内酯与异氰酸酯的脱羧环化反应的机理研究:动力学研究及(π-烯丙基)钯中亲核进攻的位点选择性的起源。

Mechanistic investigation of the palladium-catalyzed decarboxylative cyclization of gamma-methylidene-delta-valerolactones with isocyanates: kinetic studies and origin of the site selectivity in the nucleophilic attack at a (pi-allyl)palladium.

机构信息

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.

出版信息

J Am Chem Soc. 2010 Jun 2;132(21):7508-13. doi: 10.1021/ja1023223.

Abstract

Mechanistic studies for the palladium-catalyzed decarboxylative cyclization reactions of gamma-methylidene-delta-valerolactones 1 with isocyanates 2 are described. The reactions can be effectively catalyzed by palladium triarylphosphine complexes to give piperidones 3 and/or azaspiro[2.4]heptanones 4. Through kinetic studies using NMR spectroscopy, it has been determined that the oxidative addition of lactones 1 to palladium(0) is the turnover-limiting step of the catalytic cycle. By changes in the electronic properties of the triarylphosphine ligands, the product distribution between 3 and 4 can be easily controlled, and an explanation for the origin of this selectivity is provided. The selectivity between 3 and 4 is also influenced by the nature of the nitrogen substituent on isocyanates 2, and more electron-rich substituents tend to give higher selectivity toward azaspiro[2.4]heptanones 4. These studies represent the first systematic investigation into the selectivity between terminal attack and central attack at (pi-allyl)palladium species by nitrogen-based nucleophiles.

摘要

描述了钯催化的γ-亚甲基-δ-戊内酯 1 与异氰酸酯 2 的脱羧环化反应的机理研究。反应可以有效地被钯三芳基膦配合物催化,生成哌啶酮 3 和/或氮杂螺[2.4]庚烷酮 4。通过使用 NMR 光谱进行的动力学研究,已经确定内酯 1 与钯(0)的氧化加成是催化循环的限速步骤。通过改变三芳基膦配体的电子性质,可以轻松控制 3 和 4 之间的产物分布,并提供了对此选择性的解释。氮杂螺[2.4]庚烷酮 4 的选择性还受到异氰酸酯 2 上氮取代基的性质的影响,富电子取代基往往更倾向于生成更高的氮杂螺[2.4]庚烷酮 4 选择性。这些研究代表了对基于氮的亲核试剂在(π-烯丙基)钯物种中进行末端攻击和中心攻击之间的选择性的首次系统研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验