Baylor College of Medicine, Houston, TX 77030, United States.
DNA Repair (Amst). 2010 Jul 1;9(7):813-23. doi: 10.1016/j.dnarep.2010.04.005. Epub 2010 May 6.
Nucleotide excision repair (NER) is the only mechanism in humans to repair UV-induced DNA lesions such as pyrimidine (6-4) pyrimidone photoproducts and cyclobutane pyrimidine dimers (CPDs). In response to UV damage, the ataxia telangiectasia mutated and Rad3-related (ATR) kinase phosphorylates and activates several downstream effector proteins, such as p53 and XPA, to arrest cell cycle progression, stimulate DNA repair, or initiate apoptosis. However, following the completion of DNA repair, there must be active mechanisms that restore the cell to a prestressed homeostatic state. An important part of this recovery must include a process to reduce p53 and NER activity as well as to remove repair protein complexes from the DNA damage sites. Since activation of the damage response occurs in part through phosphorylation, phosphatases are obvious candidates as homeostatic regulators of the DNA damage and repair responses. Therefore, we investigated whether the serine/threonine wild-type p53-induced phosphatase 1 (WIP1/PPM1D) might regulate NER. WIP1 overexpression inhibits the kinetics of NER and CPD repair, whereas WIP1 depletion enhances NER kinetics and CPD repair. This NER suppression is dependent on WIP1 phosphatase activity, as phosphatase-dead WIP1 mutants failed to inhibit NER. Moreover, WIP1 suppresses the kinetics of UV-induced damage repair largely through effects on NER, as XPD-deficient cells are not further suppressed in repairing UV damage by overexpressed WIP1. Wip1 null mice quickly repair their CPD and undergo less UV-induced apoptosis than their wild-type counterparts. In vitro phosphatase assays identify XPA and XPC as two potential WIP1 targets in the NER pathway. Thus WIP1 may suppress NER kinetics by dephosphorylating and inactivating XPA and XPC and other NER proteins and regulators after UV-induced DNA damage is repaired.
核苷酸切除修复(NER)是人类修复紫外线诱导的 DNA 损伤的唯一机制,如嘧啶(6-4)嘧啶酮光产物和环丁烷嘧啶二聚体(CPDs)。在对紫外线损伤的反应中,共济失调毛细血管扩张突变和 Rad3 相关(ATR)激酶磷酸化并激活几个下游效应蛋白,如 p53 和 XPA,以阻止细胞周期进程、刺激 DNA 修复或启动细胞凋亡。然而,在 DNA 修复完成后,必须有活跃的机制使细胞恢复到预应激的平衡状态。这种恢复的一个重要部分必须包括一个过程,以降低 p53 和 NER 活性,并从 DNA 损伤部位去除修复蛋白复合物。由于损伤反应的激活部分是通过磷酸化发生的,因此磷酸酶是作为 DNA 损伤和修复反应的体内平衡调节剂的明显候选者。因此,我们研究了丝氨酸/苏氨酸野生型 p53 诱导的磷酸酶 1(WIP1/PPM1D)是否可能调节 NER。WIP1 过表达抑制 NER 和 CPD 修复的动力学,而 WIP1 耗竭增强 NER 动力学和 CPD 修复。这种 NER 抑制依赖于 WIP1 磷酸酶活性,因为磷酸酶失活的 WIP1 突变体不能抑制 NER。此外,WIP1 通过主要影响 NER 来抑制 UV 诱导的损伤修复动力学,因为 XPD 缺陷细胞在用过表达的 WIP1 修复 UV 损伤时不会进一步受到抑制。Wip1 缺失小鼠比其野生型小鼠更快地修复 CPD,并经历更少的 UV 诱导的细胞凋亡。体外磷酸酶测定鉴定 XPA 和 XPC 为 NER 途径中 WIP1 的两个潜在靶标。因此,WIP1 可能通过去磷酸化和失活 XPA 和 XPC 以及其他 NER 蛋白和调节剂来抑制 NER 动力学,在修复 UV 诱导的 DNA 损伤后。