Suppr超能文献

评价增强的冷凝生长(ECG)在口腔-喉咙和上气管支气管模型中用于控制呼吸药物输送的效果。

Evaluation of enhanced condensational growth (ECG) for controlled respiratory drug delivery in a mouth-throat and upper tracheobronchial model.

机构信息

Department of Pharmaceutics, Virginia Commonwealth University, 410 N. 12th St., P.O. Box 980533, Richmond, Virginia 23298-0533, USA.

出版信息

Pharm Res. 2010 Sep;27(9):1800-11. doi: 10.1007/s11095-010-0165-z. Epub 2010 May 8.

Abstract

PURPOSE

The objective of this study is to evaluate the effects of enhanced condensational growth (ECG), as a novel inhalation drug delivery method, on nano-aerosol deposition in a mouth-throat (MT) and upper tracheobronchial (TB) model using in vitro experiments and computational fluid dynamics (CFD) simulations.

METHODS

Separate streams of nebulized nano-aerosols and saturated humidified air (39 degrees C-ECG; 25 degrees C-control) were combined as they were introduced into a realistic MT-TB geometry. Aerosol deposition was determined in the MT, generations G0-G2 (trachea-lobar bronchi) and G3-G5 and compared to CFD simulations.

RESULTS

Using ECG conditions, deposition of 560 and 900 nm aerosols was low in the MT region of the MT-TB model. Aerosol drug deposition in the G0-G2 and G3-G5 regions increased due to enhanced condensational growth compared to control. CFD-predicted depositions were generally in good agreement with the experimental values.

CONCLUSIONS

The ECG platform appears to offer an effective method of delivering nano-aerosols through the extrathoracic region, with minimal deposition, to the tracheobronchial airways and beyond. Aerosol deposition is then facilitated as enhanced condensational growth increases particle size. Future studies will investigate the effects of physio-chemical drug properties and realistic inhalation profiles on ECG growth characteristics.

摘要

目的

本研究旨在评估增强冷凝生长(ECG)作为一种新型吸入药物输送方法对体外实验和计算流体动力学(CFD)模拟中口腔-咽喉(MT)和上气管支气管(TB)模型中纳米气溶胶沉积的影响。

方法

将雾化的纳米气溶胶和饱和加湿空气(39°C-ECG;25°C-对照)的单独流在引入真实 MT-TB 几何形状时混合。在 MT、G0-G2(气管-叶支气管)和 G3-G5 级中确定气溶胶沉积,并与 CFD 模拟进行比较。

结果

在 ECG 条件下,MT-TB 模型的 MT 区域中 560nm 和 900nm 气溶胶的沉积量较低。与对照相比,由于增强的冷凝生长,G0-G2 和 G3-G5 区域中的气溶胶药物沉积增加。CFD 预测的沉积量通常与实验值吻合良好。

结论

ECG 平台似乎提供了一种有效的方法,可将纳米气溶胶通过胸外区域输送,沉积量最小,输送到气管支气管气道及更远的部位。然后,随着增强的冷凝生长增加颗粒大小,促进了气溶胶沉积。未来的研究将调查生理化学药物特性和现实吸入概况对 ECG 生长特性的影响。

相似文献

3
Improving the lung delivery of nasally administered aerosols during noninvasive ventilation-an application of enhanced condensational growth (ECG).
J Aerosol Med Pulm Drug Deliv. 2011 Apr;24(2):103-18. doi: 10.1089/jamp.2010.0849. Epub 2011 Mar 16.
4
Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
J Appl Physiol (1985). 2008 Jun;104(6):1761-77. doi: 10.1152/japplphysiol.01233.2007. Epub 2008 Apr 3.
5
Evaluation of the Respimat Soft Mist Inhaler using a concurrent CFD and in vitro approach.
J Aerosol Med Pulm Drug Deliv. 2009 Jun;22(2):99-112. doi: 10.1089/jamp.2008.0708.
6
In vitro tests for aerosol deposition. III: effect of inhaler insertion angle on aerosol deposition.
J Aerosol Med Pulm Drug Deliv. 2013 Jun;26(3):145-56. doi: 10.1089/jamp.2012.0989. Epub 2012 Oct 1.
7
Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.
J Aerosol Med Pulm Drug Deliv. 2009 Jun;22(2):67-83. doi: 10.1089/jamp.2008.0692.
8
Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data.
Int J Pharm. 2020 Sep 25;587:119599. doi: 10.1016/j.ijpharm.2020.119599. Epub 2020 Jul 11.
10
Intermittent aerosol delivery to the lungs during high-flow nasal cannula therapy.
Respir Care. 2014 Oct;59(10):1476-86. doi: 10.4187/respcare.02903. Epub 2014 Jun 10.

引用本文的文献

1
Asymmetric lung increases particle filtration by deposition.
Sci Rep. 2023 Jun 3;13(1):9040. doi: 10.1038/s41598-023-36176-3.
2
Targeted delivery of inhalable drug particles in a patient-specific tracheobronchial tree with moderate COVID-19: A numerical study.
Powder Technol. 2022 Jun;405:117520. doi: 10.1016/j.powtec.2022.117520. Epub 2022 May 17.
3
Advancement of the Infant Air-Jet Dry Powder Inhaler (DPI): Evaluation of Different Positive-Pressure Air Sources and Flow Rates.
Pharm Res. 2021 Sep;38(9):1615-1632. doi: 10.1007/s11095-021-03094-w. Epub 2021 Aug 30.
5
High-Efficiency Dry Powder Aerosol Delivery to Children: Review and Application of New Technologies.
J Aerosol Sci. 2021 Mar;153. doi: 10.1016/j.jaerosci.2020.105692. Epub 2020 Oct 14.
7
Transport and deposition of hygroscopic particles in asthmatic subjects with and without airway narrowing.
J Aerosol Sci. 2020 Aug;146:105581. doi: 10.1016/j.jaerosci.2020.105581. Epub 2020 Apr 28.
8
A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition.
Int J Environ Res Public Health. 2020 Jan 7;17(2):380. doi: 10.3390/ijerph17020380.
9
Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs.
J Aerosol Med Pulm Drug Deliv. 2019 Oct;32(5):317-339. doi: 10.1089/jamp.2018.1508. Epub 2019 Jul 9.
10
Use of computational fluid dynamics deposition modeling in respiratory drug delivery.
Expert Opin Drug Deliv. 2019 Jan;16(1):7-26. doi: 10.1080/17425247.2019.1551875. Epub 2018 Dec 10.

本文引用的文献

2
Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth.
Aerosol Sci Technol. 2010 Jun 1;44(6):473-483. doi: 10.1080/02786821003749525.
3
Insulin nanoparticles: stability and aerosolization from pressurized metered dose inhalers.
Int J Pharm. 2009 Jun 22;375(1-2):114-22. doi: 10.1016/j.ijpharm.2009.03.031. Epub 2009 Apr 5.
4
Aerosol Deposition in the Extrathoracic Region.
Aerosol Sci Technol. 2003;37(8):659-671. doi: 10.1080/02786820300906.
5
Evaluation of the Respimat Soft Mist Inhaler using a concurrent CFD and in vitro approach.
J Aerosol Med Pulm Drug Deliv. 2009 Jun;22(2):99-112. doi: 10.1089/jamp.2008.0708.
6
Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry.
J Aerosol Med Pulm Drug Deliv. 2009 Jun;22(2):67-83. doi: 10.1089/jamp.2008.0692.
7
Pulmonary applications and toxicity of engineered nanoparticles.
Am J Physiol Lung Cell Mol Physiol. 2008 Sep;295(3):L400-11. doi: 10.1152/ajplung.00041.2008. Epub 2008 Jul 18.
8
Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
J Appl Physiol (1985). 2008 Jun;104(6):1761-77. doi: 10.1152/japplphysiol.01233.2007. Epub 2008 Apr 3.
9
Targeted delivery of nanoparticles for the treatment of lung diseases.
Adv Drug Deliv Rev. 2008 May 22;60(8):863-75. doi: 10.1016/j.addr.2007.11.006. Epub 2008 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验