Suppr超能文献

提高无创通气时经鼻给予的气雾剂的肺部传递-增强凝结生长(ECG)的应用。

Improving the lung delivery of nasally administered aerosols during noninvasive ventilation-an application of enhanced condensational growth (ECG).

机构信息

Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, 23284-3015, USA.

出版信息

J Aerosol Med Pulm Drug Deliv. 2011 Apr;24(2):103-18. doi: 10.1089/jamp.2010.0849. Epub 2011 Mar 16.

Abstract

BACKGROUND

Aerosol drug delivery during noninvasive ventilation (NIV) is known to be inefficient due to high depositional losses. To improve drug delivery efficiency, the concept of enhanced condensational growth (ECG) was recently proposed in which a submicrometer or nanoaerosol reduces extrathoracic deposition and subsequent droplet size increase promotes lung retention. The objective of this study was to provide proof-of-concept that the ECG approach could improve lung delivery of nasally administered aerosols under conditions consistent with NIV.

METHODS

Aerosol deposition and size increase were evaluated in an adult nose-mouth-throat (NMT) replica geometry using both in vitro experiments and CFD simulations. For the ECG delivery approach, separate streams of a submicrometer aerosol and warm (39°C) saturated air were generated and delivered to the right and left nostril inlets, respectively. A control case was also considered in which an aerosol with a mass median aerodynamic diameter (MMAD) of 4.67 μm was delivered to the model.

RESULTS

In vitro experiments showed that the ECG approach significantly reduced the drug deposition fraction in the NMT geometry compared with the control case [14.8 (1.83)%-ECG vs. 72.6 (3.7)%-control]. Aerosol size increased from an initial MMAD of 900 nm to a size of approximately 2 μm at the exit of the NMT geometry. Results of the CFD model were generally in good agreement with the experimental findings. Based on CFD predictions, increasing the delivery temperature of the aerosol stream from 21 to 35°C under ECG conditions further reduced the total NMT drug deposition to 5% and maintained aerosol growth by ECG to approximately 2 μm.

CONCLUSIONS

Application of the ECG approach may significantly improve the delivery of pharmaceutical aerosols during NIV and may open the door for using the nasal route to routinely deliver pulmonary medications.

摘要

背景

由于沉积损失较高,非侵入性通气(NIV)期间的气溶胶药物输送已知效率低下。为了提高药物输送效率,最近提出了增强凝结生长(ECG)的概念,其中亚微米或纳米气溶胶减少胸外沉积,随后的液滴尺寸增加促进肺部保留。本研究的目的是提供概念验证,即 ECG 方法可以在与 NIV 一致的条件下改善鼻内给药气溶胶的肺部输送。

方法

在成人口鼻喉(NMT)复制几何形状中,通过体外实验和 CFD 模拟评估了气溶胶沉积和尺寸增加。对于 ECG 输送方法,分别生成亚微米气溶胶和温暖(39°C)饱和空气的单独流,并分别输送到右鼻孔和左鼻孔入口。还考虑了一个对照案例,其中将质量中值空气动力学直径(MMAD)为 4.67μm 的气溶胶输送到模型中。

结果

体外实验表明,与对照情况相比,ECG 方法显着减少了 NMT 几何形状中的药物沉积分数[14.8(1.83)%-ECG 与 72.6(3.7)%-对照]。气溶胶尺寸从初始 MMAD 为 900nm 增加到 NMT 几何形状出口处的约 2μm。CFD 模型的结果通常与实验结果吻合良好。基于 CFD 预测,在 ECG 条件下将气溶胶流的输送温度从 21°C 增加到 35°C 进一步将 NMT 的总药物沉积减少到 5%,并通过 ECG 将气溶胶生长维持在约 2μm。

结论

ECG 方法的应用可能会显着改善 NIV 期间药物气溶胶的输送,并可能为常规使用鼻腔途径输送肺部药物开辟道路。

相似文献

1
Improving the lung delivery of nasally administered aerosols during noninvasive ventilation-an application of enhanced condensational growth (ECG).
J Aerosol Med Pulm Drug Deliv. 2011 Apr;24(2):103-18. doi: 10.1089/jamp.2010.0849. Epub 2011 Mar 16.
2
Efficient Nose-to-Lung (N2L) Aerosol Delivery with a Dry Powder Inhaler.
J Aerosol Med Pulm Drug Deliv. 2015 Jun;28(3):189-201. doi: 10.1089/jamp.2014.1158. Epub 2014 Sep 5.
4
Development of a High-Flow Nasal Cannula and Pharmaceutical Aerosol Combination Device.
J Aerosol Med Pulm Drug Deliv. 2019 Aug;32(4):224-241. doi: 10.1089/jamp.2018.1488. Epub 2019 Mar 11.
5
Intermittent aerosol delivery to the lungs during high-flow nasal cannula therapy.
Respir Care. 2014 Oct;59(10):1476-86. doi: 10.4187/respcare.02903. Epub 2014 Jun 10.
6
Targeted Lung Delivery of Nasally Administered Aerosols.
Aerosol Sci Technol. 2014;48(4):434-449. doi: 10.1080/02786826.2014.887829.
8
High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
J Aerosol Med Pulm Drug Deliv. 2019 Jun;32(3):132-148. doi: 10.1089/jamp.2018.1490. Epub 2018 Dec 15.
9
High-efficiency generation and delivery of aerosols through nasal cannula during noninvasive ventilation.
J Aerosol Med Pulm Drug Deliv. 2013 Oct;26(5):266-79. doi: 10.1089/jamp.2012.1006. Epub 2012 Dec 28.

引用本文的文献

1
Influencing factors of particle deposition in the human nasal cavity.
Laryngoscope Investig Otolaryngol. 2024 Jul 22;9(4):e1308. doi: 10.1002/lio2.1308. eCollection 2024 Aug.
3
4
High-Efficiency Dry Powder Aerosol Delivery to Children: Review and Application of New Technologies.
J Aerosol Sci. 2021 Mar;153. doi: 10.1016/j.jaerosci.2020.105692. Epub 2020 Oct 14.
6
Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs.
J Aerosol Med Pulm Drug Deliv. 2019 Oct;32(5):317-339. doi: 10.1089/jamp.2018.1508. Epub 2019 Jul 9.
7
Differences in Particle Deposition Between Members of Imaging-Based Asthma Clusters.
J Aerosol Med Pulm Drug Deliv. 2019 Aug;32(4):213-223. doi: 10.1089/jamp.2018.1487. Epub 2019 Mar 19.
8
Use of computational fluid dynamics deposition modeling in respiratory drug delivery.
Expert Opin Drug Deliv. 2019 Jan;16(1):7-26. doi: 10.1080/17425247.2019.1551875. Epub 2018 Dec 10.
9
Efficient Nose-to-Lung Aerosol Delivery with an Inline DPI Requiring Low Actuation Air Volume.
Pharm Res. 2018 Aug 21;35(10):194. doi: 10.1007/s11095-018-2473-7.
10
Application of an inline dry powder inhaler to deliver high dose pharmaceutical aerosols during low flow nasal cannula therapy.
Int J Pharm. 2018 Jul 30;546(1-2):1-9. doi: 10.1016/j.ijpharm.2018.05.011. Epub 2018 May 5.

本文引用的文献

2
Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth.
Aerosol Sci Technol. 2010 Jun 1;44(6):473-483. doi: 10.1080/02786821003749525.
4
Noninvasive positive pressure ventilation: Increasing use in acute care.
Cleve Clin J Med. 2010 May;77(5):307-16. doi: 10.3949/ccjm.77a.09145.
5
The clinical utility of long-term humidification therapy in chronic airway disease.
Respir Med. 2010 Apr;104(4):525-33. doi: 10.1016/j.rmed.2009.12.016. Epub 2010 Feb 9.
6
Management of chronic obstructive pulmonary disease patients after hospitalization for acute exacerbation.
Respiration. 2010;79(3):255-61. doi: 10.1159/000235721. Epub 2009 Aug 19.
7
Research in high flow therapy: mechanisms of action.
Respir Med. 2009 Oct;103(10):1400-5. doi: 10.1016/j.rmed.2009.04.007. Epub 2009 May 21.
8
Interindividual variability in nasal filtration as a function of nasal cavity geometry.
J Aerosol Med Pulm Drug Deliv. 2009 Jun;22(2):139-55. doi: 10.1089/jamp.2008.0713.
9
Aerosol Deposition in the Extrathoracic Region.
Aerosol Sci Technol. 2003;37(8):659-671. doi: 10.1080/02786820300906.
10
Evaluation of the Respimat Soft Mist Inhaler using a concurrent CFD and in vitro approach.
J Aerosol Med Pulm Drug Deliv. 2009 Jun;22(2):99-112. doi: 10.1089/jamp.2008.0708.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验