Suppr超能文献

增强凝聚生长过程中纳米气溶胶尺寸变化的表征

Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth.

作者信息

Longest P Worth, McLeskey James T, Hindle Michael

机构信息

Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, VA.

出版信息

Aerosol Sci Technol. 2010 Jun 1;44(6):473-483. doi: 10.1080/02786821003749525.

Abstract

Increasing the size of nanoaerosols may be beneficial in a number of applications including filtration, particle size selection, and targeted respiratory drug delivery. A potential method to increase particle or droplet size is enhanced condensational growth (ECG), which involves combining the aerosol with saturated or supersaturated air. In this study, we characterize the ECG process in a model tubular geometry as a function of initial aerosol size (mean diameters - 150, 560 and 900 nm) and relative humidity conditions using both in vitro experiments and numerical modeling. Relative humidities (99.8 - 104%) and temperatures (25 - 39 °C) were evaluated that can safely be applied to either targeted respiratory drug delivery or personal aerosol filtration systems. For inlet saturated air temperatures above ambient conditions (30 and 39 °C), the initial nanoaerosols grew to a size range of 1000 - 3000 nm (1 - 3 μm) over a time period of 0.2 seconds. The numerical model results were generally consistent with the experimental findings and predicted final to initial diameter ratios of up to 8 after 0.2 s of humidity exposure and 14 at 1 s. Based on these observations, a respiratory drug delivery approach is suggested in which nanoaerosols in the size range of 500 nm are delivered in conjunction with a saturated or supersaturated air stream. The initial nanoaerosol size will ensure minimal deposition and loss in the mouth-throat region while condensational growth in the respiratory tract can be used to ensure maximal lung retention and to potentially target the site of deposition.

摘要

增大纳米气溶胶的尺寸在包括过滤、粒径选择和靶向呼吸道给药等多种应用中可能是有益的。一种增大颗粒或液滴尺寸的潜在方法是增强凝结生长(ECG),这涉及将气溶胶与饱和或过饱和空气相结合。在本研究中,我们使用体外实验和数值模拟,在模型管状几何结构中表征了ECG过程,该过程是初始气溶胶尺寸(平均直径为150、560和900纳米)和相对湿度条件的函数。评估了可安全应用于靶向呼吸道给药或个人气溶胶过滤系统的相对湿度(99.8 - 104%)和温度(25 - 39℃)。对于高于环境条件(30和39℃)的入口饱和空气温度,初始纳米气溶胶在0.2秒的时间段内生长到1000 - 3000纳米(1 - 3微米)的尺寸范围。数值模型结果与实验结果总体一致,并预测在暴露于湿度0.2秒后最终与初始直径比高达8,在1秒时为14。基于这些观察结果,提出了一种呼吸道给药方法,其中将尺寸范围为500纳米的纳米气溶胶与饱和或过饱和气流一起输送。初始纳米气溶胶尺寸将确保在口咽区域的沉积和损失最小,而呼吸道中的凝结生长可用于确保最大程度的肺部滞留并潜在地靶向沉积部位。

相似文献

1
Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth.
Aerosol Sci Technol. 2010 Jun 1;44(6):473-483. doi: 10.1080/02786821003749525.
3
Improving the lung delivery of nasally administered aerosols during noninvasive ventilation-an application of enhanced condensational growth (ECG).
J Aerosol Med Pulm Drug Deliv. 2011 Apr;24(2):103-18. doi: 10.1089/jamp.2010.0849. Epub 2011 Mar 16.
6
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
7
Targeted Lung Delivery of Nasally Administered Aerosols.
Aerosol Sci Technol. 2014;48(4):434-449. doi: 10.1080/02786826.2014.887829.
10
Intermittent aerosol delivery to the lungs during high-flow nasal cannula therapy.
Respir Care. 2014 Oct;59(10):1476-86. doi: 10.4187/respcare.02903. Epub 2014 Jun 10.

引用本文的文献

1
Inhaled Nanoparticulate Systems: Composition, Manufacture and Aerosol Delivery.
J Aerosol Med Pulm Drug Deliv. 2024 Aug;37(4):202-218. doi: 10.1089/jamp.2024.29117.mk.
2
Impact of high- and low-flow nebulised saline on airway hydration and mucociliary transport.
ERJ Open Res. 2023 Jun 12;9(3). doi: 10.1183/23120541.00724-2022. eCollection 2023 May.
4
Advancement of the Infant Air-Jet Dry Powder Inhaler (DPI): Evaluation of Different Positive-Pressure Air Sources and Flow Rates.
Pharm Res. 2021 Sep;38(9):1615-1632. doi: 10.1007/s11095-021-03094-w. Epub 2021 Aug 30.
5
Assessment and Validation of a Hygroscopic Growth Model with Different Water Activity Estimation Methods.
Aerosol Sci Technol. 2020;54(10):1169-1182. doi: 10.1080/02786826.2020.1763247. Epub 2020 May 19.
6
Transport and deposition of hygroscopic particles in asthmatic subjects with and without airway narrowing.
J Aerosol Sci. 2020 Aug;146:105581. doi: 10.1016/j.jaerosci.2020.105581. Epub 2020 Apr 28.
7
Biological Obstacles for Identifying - Correlations of Orally Inhaled Formulations.
Pharmaceutics. 2019 Jul 5;11(7):316. doi: 10.3390/pharmaceutics11070316.
8
Targeted Lung Delivery of Nasally Administered Aerosols.
Aerosol Sci Technol. 2014;48(4):434-449. doi: 10.1080/02786826.2014.887829.
9
Targeting aerosol deposition to and within the lung airways using excipient enhanced growth.
J Aerosol Med Pulm Drug Deliv. 2013 Oct;26(5):248-65. doi: 10.1089/jamp.2012.0997. Epub 2013 Jan 3.
10
High-efficiency generation and delivery of aerosols through nasal cannula during noninvasive ventilation.
J Aerosol Med Pulm Drug Deliv. 2013 Oct;26(5):266-79. doi: 10.1089/jamp.2012.1006. Epub 2012 Dec 28.

本文引用的文献

1
Aerosol Deposition in the Extrathoracic Region.
Aerosol Sci Technol. 2003;37(8):659-671. doi: 10.1080/02786820300906.
2
Targeted delivery of nanoparticles for the treatment of lung diseases.
Adv Drug Deliv Rev. 2008 May 22;60(8):863-75. doi: 10.1016/j.addr.2007.11.006. Epub 2008 Feb 6.
4
Degree of throat deposition can explain the variability in lung deposition of inhaled drugs.
J Aerosol Med. 2006 Winter;19(4):473-83. doi: 10.1089/jam.2006.19.473.
5
Ultrafine particle-lung interactions: does size matter?
J Aerosol Med. 2006 Spring;19(1):74-83. doi: 10.1089/jam.2006.19.74.
6
Advances in aerosols: adult respiratory disease.
J Aerosol Med. 2006 Spring;19(1):36-46. doi: 10.1089/jam.2006.19.36.
8
Nanotechnology: looking as we leap.
Environ Health Perspect. 2004 Sep;112(13):A740-9. doi: 10.1289/ehp.112-a740.
9
Dosimetry and toxicology of ultrafine particles.
J Aerosol Med. 2004 Summer;17(2):140-52. doi: 10.1089/0894268041457147.
10
Translocation of inhaled ultrafine particles to the brain.
Inhal Toxicol. 2004 Jun;16(6-7):437-45. doi: 10.1080/08958370490439597.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验