Suppr超能文献

采用整个气管支气管气道的个体路径模型增强凝结生长的呼吸药物输送特性。

Characterization of respiratory drug delivery with enhanced condensational growth using an individual path model of the entire tracheobronchial airways.

机构信息

Department of Mechanical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284-3015, USA.

出版信息

Ann Biomed Eng. 2011 Mar;39(3):1136-53. doi: 10.1007/s10439-010-0223-z. Epub 2010 Dec 9.

Abstract

The objective of this study was to evaluate the delivery of inhaled pharmaceutical aerosols using an enhanced condensational growth (ECG) approach in an airway model extending from the oral cavity to the end of the tracheobronchial (TB) region. The geometry consisted of an elliptical mouth-throat (MT) model, the upper TB airways extending to bifurcation B3, and a subsequent individual path model entering the right lower lobe of the lung. Submicrometer monodisperse aerosols with diameters of 560 and 900 nm were delivered to the mouth inlet under control (25 °C with subsaturated air) or ECG (39 or 42 °C with saturated air) conditions. Flow fields and droplet characteristics were simulated using a computational fluid dynamics model that was previously demonstrated to accurately predict aerosol size growth and deposition. Results indicated that both the control and ECG delivery cases produced very little deposition in the MT and upper TB model (approximately 1%). Under ECG delivery conditions, large size increases of the aerosol droplets were observed resulting in mass median aerodynamic diameters of 2.4-3.3 μm exiting B5. This increase in aerosol size produced an order of magnitude increase in aerosol deposition within the TB airways compared with the controls, with TB deposition efficiencies of approximately 32-46% for ECG conditions. Estimates of downstream pulmonary deposition indicted near full lung retention of the aerosol during ECG delivery. Furthermore, targeting the region of TB deposition by controlling the inlet temperature conditions and initial aerosol size also appeared possible.

摘要

本研究旨在评估通过增强凝结生长(ECG)方法在从口腔延伸到气管支气管(TB)区域末端的气道模型中输送吸入式药物气溶胶。该几何形状由椭圆形的口咽(MT)模型、上 TB 气道延伸至分叉 B3 以及随后进入右下肺叶的单独路径模型组成。亚微米单分散气溶胶的直径为 560 和 900nm,在控制(25°C 下空气未饱和)或 ECG(39 或 42°C 下空气饱和)条件下通过口腔入口输送。使用先前证明可准确预测气溶胶粒径增长和沉积的计算流体动力学模型模拟流场和液滴特性。结果表明,在 MT 和上 TB 模型中,控制和 ECG 输送条件都导致很少的沉积(约 1%)。在 ECG 输送条件下,观察到气溶胶液滴的大幅增加,导致在 B5 处退出的质量中值空气动力学直径为 2.4-3.3μm。与控制相比,气溶胶粒径的这种增加导致 TB 气道中的气溶胶沉积增加了一个数量级,ECG 条件下的 TB 沉积效率约为 32-46%。对下游肺部沉积的估计表明,在 ECG 输送期间,气溶胶几乎全部滞留在肺部。此外,通过控制入口温度条件和初始气溶胶粒径,似乎也可以靶向 TB 沉积区域。

相似文献

4
Targeting aerosol deposition to and within the lung airways using excipient enhanced growth.
J Aerosol Med Pulm Drug Deliv. 2013 Oct;26(5):248-65. doi: 10.1089/jamp.2012.0997. Epub 2013 Jan 3.
6
Improving the lung delivery of nasally administered aerosols during noninvasive ventilation-an application of enhanced condensational growth (ECG).
J Aerosol Med Pulm Drug Deliv. 2011 Apr;24(2):103-18. doi: 10.1089/jamp.2010.0849. Epub 2011 Mar 16.
7
Targeted Lung Delivery of Nasally Administered Aerosols.
Aerosol Sci Technol. 2014;48(4):434-449. doi: 10.1080/02786826.2014.887829.
9
Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
Ann Biomed Eng. 2008 Oct;36(10):1714-34. doi: 10.1007/s10439-008-9552-6. Epub 2008 Aug 20.

引用本文的文献

4
Independent Lung Ventilation-Experimental Studies on a 3D Printed Respiratory Tract Model.
Materials (Basel). 2021 Sep 9;14(18):5189. doi: 10.3390/ma14185189.
6
High-Efficiency Dry Powder Aerosol Delivery to Children: Review and Application of New Technologies.
J Aerosol Sci. 2021 Mar;153. doi: 10.1016/j.jaerosci.2020.105692. Epub 2020 Oct 14.
8
Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs.
J Aerosol Med Pulm Drug Deliv. 2019 Oct;32(5):317-339. doi: 10.1089/jamp.2018.1508. Epub 2019 Jul 9.
9
Use of computational fluid dynamics deposition modeling in respiratory drug delivery.
Expert Opin Drug Deliv. 2019 Jan;16(1):7-26. doi: 10.1080/17425247.2019.1551875. Epub 2018 Dec 10.
10
In vitro dose comparison of Respimat inhaler with dry powder inhalers for COPD maintenance therapy.
Int J Chron Obstruct Pulmon Dis. 2017 May 26;12:1565-1577. doi: 10.2147/COPD.S115886. eCollection 2017.

本文引用的文献

2
Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth.
Aerosol Sci Technol. 2010 Jun 1;44(6):473-483. doi: 10.1080/02786821003749525.
3
Simulation of pulmonary air flow with a subject-specific boundary condition.
J Biomech. 2010 Aug 10;43(11):2159-63. doi: 10.1016/j.jbiomech.2010.03.048. Epub 2010 May 18.
5
Mode of breathing-tidal or slow and deep-through the I-neb Adaptive Aerosol Delivery (AAD) system affects lung deposition of (99m)Tc-DTPA.
J Aerosol Med Pulm Drug Deliv. 2010 Apr;23 Suppl 1(Suppl 1):S37-43. doi: 10.1089/jamp.2009.0786.
6
Magnetic deposition of aerosols composed of aggregated superparamagnetic nanoparticles.
Pharm Res. 2010 May;27(5):855-65. doi: 10.1007/s11095-010-0078-x. Epub 2010 Mar 3.
7
Deposition of aerosol particles in human lungs: in vivo measurement and modelling.
Biomarkers. 2009 Jul;14 Suppl 1:54-8. doi: 10.1080/13547500902965286.
8
Computational fluid dynamics.
IEEE Eng Med Biol Mag. 2009 May-Jun;28(3):25-33. doi: 10.1109/MEMB.2009.932480.
10
Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.
Adv Drug Deliv Rev. 2009 Feb 27;61(2):158-71. doi: 10.1016/j.addr.2008.11.002. Epub 2008 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验