Suppr超能文献

塌缩机制模型:在选择性不可逆拮抗剂概念验证剂量选择中的应用

Collapsing mechanistic models: an application to dose selection for proof of concept of a selective irreversible antagonist.

作者信息

Hutmacher Matthew M, Mukherjee Debu, Kowalski Kenneth G, Jordan David C

机构信息

Pfizer Corporation Pharmacometrics, 2800 Plymouth Road, Ann Arbor, MI 48015, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2005 Aug;32(3-4):501-20. doi: 10.1007/s10928-005-0052-0.

Abstract

When data fail to support fully mechanistic models, alternative modeling strategies must be pursued. Simpler, more empirical models or the fixing of various rate constants are necessary to avoid over-parameterization. Fitting empirical models can dilute information, limit interpretation, and cloud inference. Fixing rate constants requires external, relevant, and reliable information on the mechanism and can introduce subjectivity as well as complicate determining the validity of model extrapolation. Furthermore, both these methods ignore the possibility that failure of the data to support the mechanistic model could contain information about the pharmacodynamic process. If the pathway has processes with "fast" dynamics, these steps could collapse yielding parametrically simpler classes of models. The collapsed models would retain the mechanistic interpretation of the full model, which is crucial for performing substantive inference, while reducing the number of parameters to be estimated. These concepts are illustrated through their manifestations on the dose-effect relationship and ensuing dose selection for a proof of concept study. Specifically, a mechanistic model for a selective irreversible antagonist was posited and candidate classes of models were derived utilizing "fast dynamics" assumptions. Model assessment determined the rate-limiting step facilitating pertinent inference with respect to the mechanism. For comparison, inference using a more empirical modeling strategy is also presented. A general solution for the collapse of the typical PK-PD model differential equations is provided in Appendix A.

摘要

当数据无法完全支持机理模型时,就必须采用其他建模策略。需要使用更简单、更具经验性的模型或固定各种速率常数,以避免过度参数化。拟合经验模型可能会稀释信息、限制解释并模糊推断。固定速率常数需要有关该机制的外部、相关且可靠的信息,并且可能会引入主观性,同时使确定模型外推有效性的过程变得复杂。此外,这两种方法都忽略了数据无法支持机理模型可能包含有关药效学过程信息的可能性。如果该途径具有“快速”动力学过程,这些步骤可能会合并,从而产生参数更简单的模型类别。合并后的模型将保留完整模型的机理解释,这对于进行实质性推断至关重要,同时减少了待估计的参数数量。通过它们在剂量 - 效应关系上的表现以及随后用于概念验证研究的剂量选择来说明这些概念。具体而言,提出了一种选择性不可逆拮抗剂的机理模型,并利用“快速动力学”假设推导出候选模型类别。模型评估确定了限速步骤,有助于对该机制进行相关推断。为作比较,还展示了使用更具经验性建模策略的推断。附录A中提供了典型PK - PD模型微分方程合并的一般解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验