Suppr超能文献

CMINNs:房室模型驱动的神经网络——揭示药物动力学

CMINNs: Compartment model informed neural networks - Unlocking drug dynamics.

作者信息

Ahmadi Daryakenari Nazanin, Wang Shupeng, Karniadakis George

机构信息

Center for Biomedical Engineering, Brown University, Providence, RI, USA.

Division of Applied Mathematics, Brown University, Providence, RI, USA.

出版信息

Comput Biol Med. 2025 Jan;184:109392. doi: 10.1016/j.compbiomed.2024.109392. Epub 2024 Nov 28.

Abstract

In the field of pharmacokinetics and pharmacodynamics (PKPD) modeling, which plays a pivotal role in the drug development process, traditional models frequently encounter difficulties in fully encapsulating the complexities of drug absorption, distribution, and their impact on targets. Although multi-compartment models are frequently utilized to elucidate intricate drug dynamics, they can also be overly complex. To generalize modeling while maintaining simplicity, we propose an innovative approach that enhances PK and integrated PK-PD modeling by incorporating fractional calculus or time-varying parameter(s), combined with constant or piecewise constant parameters. These approaches effectively model anomalous diffusion, thereby capturing drug trapping and escape rates in heterogeneous tissues, which is a prevalent phenomenon in drug dynamics. Furthermore, this method provides insight into the dynamics of drug in cancer in multi-dose administrations. Our methodology employs a Physics-Informed Neural Network (PINN) and fractional Physics-Informed Neural Networks (fPINNs), integrating ordinary differential equations (ODEs) with integer/fractional derivative order from compartmental modeling with neural networks. This integration optimizes parameter estimation for variables that are time-variant, constant, piecewise constant, or related to the fractional derivative order. The results demonstrate that this methodology offers a robust framework that not only markedly enhances the model's depiction of drug absorption rates and distributed delayed responses but also unlocks different drug-effect dynamics, providing new insights into absorption rates, anomalous diffusion, drug resistance, persistence, and pharmacokinetic tolerance, all within a system of just two (fractional) ODEs with explainable results. These findings have the potential to streamline drug development by improving the prediction of drug behavior in complex biological systems and shedding light on cancer cell death mechanisms, ultimately aiding in the design of more effective therapeutic strategies.

摘要

在药物开发过程中起着关键作用的药代动力学和药效动力学(PKPD)建模领域,传统模型在全面涵盖药物吸收、分布及其对靶点的影响的复杂性方面常常遇到困难。尽管多室模型经常被用于阐明复杂的药物动力学,但它们也可能过于复杂。为了在保持简单性的同时进行通用建模,我们提出了一种创新方法,通过结合分数微积分或时变参数以及常数或分段常数参数来增强PK和综合PK-PD建模。这些方法有效地对异常扩散进行建模,从而捕捉药物在异质组织中的滞留和逸出率,这是药物动力学中一种普遍现象。此外,该方法还能洞察多剂量给药时癌症中药物的动态变化。我们的方法采用了物理信息神经网络(PINN)和分数物理信息神经网络(fPINN),将来自房室建模的整数/分数导数阶的常微分方程(ODE)与神经网络相结合。这种整合优化了对时变、常数、分段常数或与分数导数阶相关的变量的参数估计。结果表明,该方法提供了一个强大的框架,不仅显著增强了模型对药物吸收率和分布延迟反应的描述,还揭示了不同的药物效应动态,在仅由两个(分数)ODE组成的系统中,对吸收率、异常扩散、耐药性、持久性和药代动力学耐受性提供了新的见解,且结果具有可解释性。这些发现有可能通过改善对复杂生物系统中药物行为的预测以及阐明癌细胞死亡机制来简化药物开发,最终有助于设计更有效的治疗策略。

相似文献

2
Fractional kinetics in multi-compartmental systems.多室系统中的分数动力学。
J Pharmacokinet Pharmacodyn. 2010 Oct;37(5):507-24. doi: 10.1007/s10928-010-9170-4. Epub 2010 Oct 1.
5
Fractional dynamics pharmacokinetics-pharmacodynamic models.分数阶动力学药代动力学-药效动力学模型。
J Pharmacokinet Pharmacodyn. 2010 Jun;37(3):257-76. doi: 10.1007/s10928-010-9159-z. Epub 2010 May 9.
8
Compartmental modeling in the analysis of biological systems.生物系统分析中的房室模型
Methods Mol Biol. 2012;929:391-438. doi: 10.1007/978-1-62703-050-2_17.

本文引用的文献

7
Drug-tolerant persister cells in cancer: the cutting edges and future directions.耐药性癌细胞:前沿与未来方向。
Nat Rev Clin Oncol. 2023 Nov;20(11):799-813. doi: 10.1038/s41571-023-00815-5. Epub 2023 Sep 25.
10
Fractional calculus in mathematical oncology.分数阶微积分在数学肿瘤学中的应用。
Sci Rep. 2023 Jun 21;13(1):10083. doi: 10.1038/s41598-023-37196-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验