Division of Frontier Medical Science Programs for Biomedical Research, Department of Medicine and Molecular Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
Cancer Sci. 2010 Jul;101(7):1678-85. doi: 10.1111/j.1349-7006.2010.01576.x. Epub 2010 Mar 23.
We previously reported that the telomere-targeting drug telomestatin induces apoptosis accompanied by G-tail reduction and dissociation of binding protein TRF2 from telomeres in cancer cell lines but not normal or human telomerase reverse transcriptase (hTERT)-immortalized cells. Because telomere-targeting drugs induce growth arrest in normal cells at higher doses, their development is dependent on the ability to predict toxicity before in vivo use, but no models for this are available. Here, we established two new cell lines, telomerase immortalized human fetal hepatocytes, Hc3716-hTERT, and telomerase immortalized hepatic stellate cells, NPC-hTERT. Examinations showed that Hc3716-hTERT maintained normal mammalian cell morphology, cell growth, albumin expression, and wild-type p53 responsiveness, whereas NPC-hTERT maintained hepatic stellate-like morphology, expression of hepatic stellate markers, alpha-smooth muscle actin, and secretion of type I collagen, an extracellular matrix protein. Given our finding that telomere G-tail length in Hc3716 cells was decreased in senescence and increased by hTERT infection, we next examined the effect of high-dose telomestatin-induced telomere dysfunction and G-tail shortening on cellular functions in Hc3716-hTERT cells. Interestingly, telomestatin decreased expression of cytochrome P450 (CYP) family members CYP3A3/4, CYP3A5, and CYP3A7, mRNA and induced albumin expression at both mRNA and protein levels. These gene expression responses to telomestatin were similar to those of the normal parental cell Hc3716. These established cell lines thus represent the first model for predicting the side-effects of telomere-targeting drugs in normal cells, and should be powerful tools in the development of these drugs.
我们之前报道过,端粒靶向药物端粒司他汀在癌细胞系中诱导凋亡,伴随着 G 尾减少和结合蛋白 TRF2 从端粒上的解离,但在正常细胞或人端粒酶逆转录酶(hTERT)永生化细胞中则不会。由于端粒靶向药物在较高剂量下会导致正常细胞生长停滞,因此它们的开发依赖于在体内使用前预测毒性的能力,但目前还没有可用的模型。在这里,我们建立了两种新的细胞系,端粒酶永生化人胎肝细胞 Hc3716-hTERT 和端粒酶永生化肝星状细胞 NPC-hTERT。检查结果表明,Hc3716-hTERT 保持正常哺乳动物细胞形态、细胞生长、白蛋白表达和野生型 p53 反应性,而 NPC-hTERT 则保持肝星状细胞样形态、肝星状细胞标志物α-平滑肌肌动蛋白的表达和细胞外基质蛋白 I 型胶原的分泌。鉴于我们发现 Hc3716 细胞中端粒 G 尾长度在衰老时减少,而 hTERT 感染后增加,我们接下来研究了高剂量端粒司他汀诱导的端粒功能障碍和 G 尾缩短对 Hc3716-hTERT 细胞细胞功能的影响。有趣的是,端粒司他汀降低了细胞色素 P450(CYP)家族成员 CYP3A3/4、CYP3A5 和 CYP3A7 的 mRNA 表达,并诱导了白蛋白在 mRNA 和蛋白质水平上的表达。这些对端粒司他汀的基因表达反应与正常亲本细胞 Hc3716 相似。这些建立的细胞系因此代表了预测端粒靶向药物在正常细胞中副作用的首个模型,并且应该成为这些药物开发的有力工具。