Functional MRI laboratory, University of Michigan, MI 48109, USA.
Magn Reson Imaging. 2010 Sep;28(7):919-27. doi: 10.1016/j.mri.2010.03.035. Epub 2010 Apr 24.
Arterial spin labeling techniques can yield quantitative measures of perfusion by fitting a kinetic model to difference images (tagged-control). Because of the noisy nature of the difference images investigators typically average a large number of tagged versus control difference measurements over long periods of time. This averaging requires that the perfusion signal be at a steady state and not at the transitions between active and baseline states in order to quantitatively estimate activation induced perfusion. This can be an impediment for functional magnetic resonance imaging task experiments. In this work, we introduce a general linear model (GLM) that specifies Blood Oxygenation Level Dependent (BOLD) effects and arterial spin labeling modulation effects and translate them into meaningful, quantitative measures of perfusion by using standard tracer kinetic models. We show that there is a strong association between the perfusion values using our GLM method and the traditional subtraction method, but that our GLM method is more robust to noise.
动脉自旋标记技术可以通过对差分图像(标记-对照)拟合动力学模型来获得灌注的定量测量。由于差分图像的噪声性质,研究人员通常需要在长时间内对大量的标记与对照差分测量进行平均。这种平均要求灌注信号处于稳定状态,而不是在活跃和基线状态之间的转换,以便对激活诱导的灌注进行定量估计。这可能是功能磁共振成像任务实验的一个障碍。在这项工作中,我们引入了一个广义线性模型(GLM),该模型指定了血氧水平依赖(BOLD)效应和动脉自旋标记调制效应,并通过使用标准示踪剂动力学模型将它们转化为有意义的、定量的灌注测量。我们表明,使用我们的 GLM 方法和传统的减法方法得到的灌注值之间存在很强的关联,但我们的 GLM 方法对噪声更稳健。