Suppr超能文献

基于支持向量机的动脉自旋标记 MRI 脑血流定量分析

Support vector machine learning-based cerebral blood flow quantification for arterial spin labeling MRI.

机构信息

Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

Hum Brain Mapp. 2014 Jul;35(7):2869-75. doi: 10.1002/hbm.22445. Epub 2014 Jan 17.

Abstract

PURPOSE

To develop a multivariate machine learning classification-based cerebral blood flow (CBF) quantification method for arterial spin labeling (ASL) perfusion MRI.

METHODS

The label and control images of ASL MRI were separated using a machine-learning algorithm, the support vector machine (SVM). The perfusion-weighted image was subsequently extracted from the multivariate (all voxels) SVM classifier. Using the same pre-processing steps, the proposed method was compared with standard ASL CBF quantification method using synthetic data and in-vivo ASL images.

RESULTS

As compared with the conventional univariate approach, the proposed ASL CBF quantification method significantly improved spatial signal-to-noise-ratio (SNR) and image appearance of ASL CBF images.

CONCLUSION

the multivariate machine learning-based classification is useful for ASL CBF quantification.

摘要

目的

开发一种基于多元机器学习分类的脑血流 (CBF) 定量方法,用于动脉自旋标记 (ASL) 灌注 MRI。

方法

使用机器学习算法(支持向量机)对 ASL MRI 的标记和控制图像进行分离。随后从多元(所有体素) SVM 分类器中提取灌注加权图像。使用相同的预处理步骤,将该方法与使用合成数据和体内 ASL 图像的标准 ASL CBF 定量方法进行比较。

结果

与传统的单变量方法相比,所提出的 ASL CBF 定量方法显著提高了 ASL CBF 图像的空间信噪比 (SNR) 和图像外观。

结论

基于多元机器学习的分类对于 ASL CBF 定量是有用的。

相似文献

1
Support vector machine learning-based cerebral blood flow quantification for arterial spin labeling MRI.
Hum Brain Mapp. 2014 Jul;35(7):2869-75. doi: 10.1002/hbm.22445. Epub 2014 Jan 17.
2
Patch-based local learning method for cerebral blood flow quantification with arterial spin-labeling MRI.
Med Biol Eng Comput. 2018 Jun;56(6):951-956. doi: 10.1007/s11517-017-1735-6. Epub 2017 Nov 6.
3
Denoising arterial spin labeling perfusion MRI with deep machine learning.
Magn Reson Imaging. 2020 May;68:95-105. doi: 10.1016/j.mri.2020.01.005. Epub 2020 Jan 15.
6
Time-efficient measurement of multi-phase arterial spin labeling MR signal in white matter.
NMR Biomed. 2016 Nov;29(11):1519-1525. doi: 10.1002/nbm.3603. Epub 2016 Sep 5.
10
Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI.
Magn Reson Med. 2020 Feb;83(2):731-748. doi: 10.1002/mrm.27956. Epub 2019 Sep 12.

引用本文的文献

1
Transformer-based arterial spin labeling perfusion MRI denoising.
Vis Comput. 2025 Jul 3. doi: 10.1007/s00371-025-04061-x.
2
ADAPTIVE JOINT DATA SELECTION FOR SPARSITY BASED ARTERIAL SPIN LABELING MRI DENOISING.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635461. Epub 2024 Aug 22.
3
Multi Echo-Time ASL MRI Denoising via Joint Complex Low-Rank Regularization.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782301.
4
ASL MRI Denoising via Multi Channel Collaborative Low-Rank Regularization.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3005223. Epub 2024 Apr 2.
5
Machine learning: a new era for cardiovascular pregnancy physiology and cardio-obstetrics research.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H417-H432. doi: 10.1152/ajpheart.00149.2024. Epub 2024 Jun 7.
6
Alteration of intracranial blood perfusion in temporal lobe epilepsy, an arterial spin labeling study.
Heliyon. 2023 Mar 24;9(4):e14854. doi: 10.1016/j.heliyon.2023.e14854. eCollection 2023 Apr.
7
Arterial Spin Labeling Perfusion MRI Signal Processing Through Traditional Methods and Machine Learning.
Investig Magn Reson Imaging. 2022 Dec;26(4):220-228. doi: 10.13104/imri.2022.26.4.220. Epub 2022 Dec 31.
10
Denoising arterial spin labeling perfusion MRI with deep machine learning.
Magn Reson Imaging. 2020 May;68:95-105. doi: 10.1016/j.mri.2020.01.005. Epub 2020 Jan 15.

本文引用的文献

2
Distinct cerebral perfusion patterns in FTLD and AD.
Neurology. 2010 Sep 7;75(10):881-8. doi: 10.1212/WNL.0b013e3181f11e35.
4
Quantitative analysis of arterial spin labeling FMRI data using a general linear model.
Magn Reson Imaging. 2010 Sep;28(7):919-27. doi: 10.1016/j.mri.2010.03.035. Epub 2010 Apr 24.
5
Denoising of arterial spin labeling data: wavelet-domain filtering compared with Gaussian smoothing.
MAGMA. 2010 Jun;23(3):125-37. doi: 10.1007/s10334-010-0209-8. Epub 2010 Apr 28.
6
Effective functional mapping of fMRI data with support-vector machines.
Hum Brain Mapp. 2010 Oct;31(10):1502-11. doi: 10.1002/hbm.20955.
7
A hybrid SVM-GLM approach for fMRI data analysis.
Neuroimage. 2009 Jul 1;46(3):608-15. doi: 10.1016/j.neuroimage.2009.03.016. Epub 2009 Mar 19.
8
Physiological modulations in arterial spin labeling perfusion magnetic resonance imaging.
IEEE Trans Med Imaging. 2009 May;28(5):703-9. doi: 10.1109/TMI.2008.2012020. Epub 2009 Jan 13.
9
Mapping resting-state functional connectivity using perfusion MRI.
Neuroimage. 2008 May 1;40(4):1595-605. doi: 10.1016/j.neuroimage.2008.01.006. Epub 2008 Jan 17.
10
Assessment of functional development in normal infant brain using arterial spin labeled perfusion MRI.
Neuroimage. 2008 Feb 1;39(3):973-8. doi: 10.1016/j.neuroimage.2007.09.045. Epub 2007 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验