Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Curr Opin Biotechnol. 2010 Jun;21(3):365-71. doi: 10.1016/j.copbio.2010.03.017. Epub 2010 Apr 22.
Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a position where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.
利用蓝藻通过碳酸钙沉淀进行二氧化碳的生物矿化,为定点碳捕获和封存提供了新颖且可持续的策略。尽管该过程的细节尚待阐明,但人们认为浓缩碳的机制以及胞外多糖或蛋白质表面层中的化学反应至关重要。蓝藻可以通过光合作用利用太阳能将二氧化碳转化为难以降解的碳酸钙。钙可以来源于石膏或工业盐水等来源。更好地了解进行和调节蓝藻生物矿化的生化和遗传机制,应该使我们能够通过利用遗传工程、定向进化和仿生学等强大技术进一步优化这些步骤。