Suppr超能文献

光合活性材料的双重碳封存

Dual carbon sequestration with photosynthetic living materials.

作者信息

Dranseike Dalia, Cui Yifan, Ling Andrea S, Donat Felix, Bernhard Stéphane, Bernero Margherita, Areeckal Akhil, Qin Xiao-Hua, Oakey John S, Dillenburger Benjamin, Studart André R, Tibbitt Mark W

机构信息

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, CH.

Digital Building Technologies, Department of Architecture, ETH Zurich, Zurich, CH.

出版信息

bioRxiv. 2023 Dec 23:2023.12.22.572991. doi: 10.1101/2023.12.22.572991.

Abstract

Natural ecosystems offer efficient pathways for carbon sequestration, serving as a resilient approach to remove CO from the atmosphere with minimal environmental impact. However, the control of living systems outside of their native environments is often challenging. Here, we engineered a photosynthetic living material for dual CO sequestration by immobilizing photosynthetic microorganisms within a printable polymeric network. The carbon concentrating mechanism of the cyanobacteria enabled accumulation of CO within the cell, resulting in biomass production. Additionally, the metabolic production of OH ions in the surrounding medium created an environment for the formation of insoluble carbonates via microbially-induced calcium carbonate precipitation (MICP). Digital design and fabrication of the living material ensured sufficient access to light and nutrient transport of the encapsulated cyanobacteria, which were essential for long-term viability (more than one year) as well as efficient photosynthesis and carbon sequestration. The photosynthetic living materials sequestered approximately 2.5 mg of CO per gram of hydrogel material over 30 days via dual carbon sequestration, with 2.2 ± 0.9 mg stored as insoluble carbonates. Over an extended incubation period of 400 days, the living materials sequestered 26 ± 7 mg of CO per gram of hydrogel material in the form of stable minerals. These findings highlight the potential of photosynthetic living materials for scalable carbon sequestration, carbon-neutral infrastructure, and green building materials. The simplicity of maintenance, coupled with its scalability nature, suggests broad applications of photosynthetic living materials as a complementary strategy to mitigate CO emissions.

摘要

自然生态系统提供了高效的碳固存途径,是一种以最小的环境影响从大气中去除二氧化碳的弹性方法。然而,在其原生环境之外控制生物系统往往具有挑战性。在这里,我们通过将光合微生物固定在可打印的聚合物网络中,设计了一种用于双重二氧化碳固存的光合活性材料。蓝藻的碳浓缩机制使细胞内能够积累二氧化碳,从而实现生物质生产。此外,周围介质中氢氧根离子的代谢产生为通过微生物诱导碳酸钙沉淀(MICP)形成不溶性碳酸盐创造了环境。活性材料的数字设计和制造确保了被封装蓝藻有足够的光照和养分传输,这对于长期存活(超过一年)以及高效光合作用和碳固存至关重要。光合活性材料通过双重碳固存,在30天内每克水凝胶材料可固存约2.5毫克二氧化碳,其中2.2±0.9毫克以不溶性碳酸盐形式储存。在长达400天的延长培养期内,活性材料以稳定矿物质的形式每克水凝胶材料固存26±7毫克二氧化碳。这些发现凸显了光合活性材料在可扩展碳固存、碳中和基础设施和绿色建筑材料方面的潜力。维护的简单性及其可扩展性表明,光合活性材料作为减少二氧化碳排放的补充策略具有广泛的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1442/10769394/71a46b6cd85e/nihpp-2023.12.22.572991v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验