Pradhan Nikita, Singh Shikha, Saxena Garima, Pradhan Nischal, Koul Monika, Kharkwal Amit C, Sayyed Riyaz
Amity Institute of Microbial Technology, Amity University, Noida, India.
Division of Microbiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (PUSA), New Delhi, India.
Front Microbiol. 2025 Jul 31;16:1549022. doi: 10.3389/fmicb.2025.1549022. eCollection 2025.
Mineral-microbe interaction is a driving environmental changes, regulating the biogeochemical cycling of elements, and contributing to the formation of ore deposits. Microorganisms are fundamental to mineral transformation processes, exerting a profound influence on biogeochemical cycles and the bioavailability of critical nutrients required for plant growth. In this review, we delve into the various mechanisms by which microbes facilitate mineral dissolution, precipitation, and transformation, with a particular focus on how these processes regulate the availability of both macronutrients and micronutrients in soils. Essential microbial activities such as phosphate solubilization, iron chelation, and sulfur oxidation play a pivotal role in enhancing nutrient uptake in plants, thereby supporting sustainable agricultural practices and reducing dependence on chemical fertilizers. Furthermore, microbial-driven mineral transformations are vital for environmental remediation efforts, as they contribute to the immobilization of toxic metals and the detoxification of contaminated soils. By examining key microbial-mineral interactions-including nitrogen fixation, siderophore production, and metal precipitation-this review underscores the indispensable role of microorganisms in improving soil fertility, fostering plant growth, and bolstering ecosystem resilience. The exploration of these microbial processes reveals significant potential for advancing bioremediation strategies and the development of biofertilizers, offering promising solutions to enhance agricultural productivity and address environmental challenges.
矿物与微生物的相互作用推动着环境变化,调节着元素的生物地球化学循环,并促进矿床的形成。微生物是矿物转化过程的基础,对生物地球化学循环以及植物生长所需关键养分的生物有效性有着深远影响。在本综述中,我们深入探讨微生物促进矿物溶解、沉淀和转化的各种机制,特别关注这些过程如何调节土壤中大量养分和微量养分的有效性。诸如磷溶解、铁螯合和硫氧化等重要的微生物活动在增强植物对养分的吸收方面发挥着关键作用,从而支持可持续农业实践并减少对化肥的依赖。此外,微生物驱动的矿物转化对于环境修复工作至关重要,因为它们有助于固定有毒金属并对受污染土壤进行解毒。通过研究关键的微生物 - 矿物相互作用,包括固氮、铁载体产生和金属沉淀,本综述强调了微生物在改善土壤肥力、促进植物生长和增强生态系统恢复力方面不可或缺的作用。对这些微生物过程的探索揭示了推进生物修复策略和生物肥料开发的巨大潜力,为提高农业生产力和应对环境挑战提供了有前景的解决方案。