Department of Neurology, NYU Langone School of Medicine, NYU Epilepsy Center, 223 East 34th Street, New York, NY 10016, USA.
Epilepsy Behav. 2010 May;18(1-2):106-9. doi: 10.1016/j.yebeh.2010.03.011. Epub 2010 May 10.
Using separate generalized mixed-effects models, we assessed seizure recall and prediction, as well as contributing diagnostic variables, in 83 adult patients with epilepsy undergoing video/EEG monitoring. The model revealed that when participants predicted a seizure, probability equaled 0.320 (95% CI: 0.149-0.558), a significant (P<0.05) increase over negative predictions (0.151, 95% CI: 0.71-0.228]). With no seizure, the rate of remembering was approximately 0.130 (95% CI: 0.73-0.219), increasing significantly to 0.628 (95% CI: 0.439 to 0.784) when a seizure occurred (P<0.001). Of the variables analyzed, only inpatient seizure rate influenced predictability (P<0.001) or recollection (P<0.001). These models reveal that patients were highly aware of their seizures, and in many cases, were able to make accurate predictions, for which seizure rate may be an important factor.
我们使用独立的广义混合效应模型,评估了 83 名接受视频/EEG 监测的成年癫痫患者的癫痫发作回忆和预测,以及相关的诊断变量。模型显示,当参与者预测癫痫发作时,概率等于 0.320(95%置信区间:0.149-0.558),明显高于负预测值(0.151,95%置信区间:0.71-0.228)。没有癫痫发作时,回忆的概率约为 0.130(95%置信区间:0.73-0.219),当发生癫痫发作时,回忆的概率显著增加到 0.628(95%置信区间:0.439-0.784)(P<0.001)。在分析的变量中,只有住院期间的癫痫发作率影响可预测性(P<0.001)或回忆率(P<0.001)。这些模型表明,患者对自己的癫痫发作具有高度的意识,在许多情况下,能够做出准确的预测,而癫痫发作率可能是一个重要因素。