Suppr超能文献

发作预测和发作后回忆。

Seizure prediction and recall.

机构信息

Department of Neurology, NYU Langone School of Medicine, NYU Epilepsy Center, 223 East 34th Street, New York, NY 10016, USA.

出版信息

Epilepsy Behav. 2010 May;18(1-2):106-9. doi: 10.1016/j.yebeh.2010.03.011. Epub 2010 May 10.

Abstract

Using separate generalized mixed-effects models, we assessed seizure recall and prediction, as well as contributing diagnostic variables, in 83 adult patients with epilepsy undergoing video/EEG monitoring. The model revealed that when participants predicted a seizure, probability equaled 0.320 (95% CI: 0.149-0.558), a significant (P<0.05) increase over negative predictions (0.151, 95% CI: 0.71-0.228]). With no seizure, the rate of remembering was approximately 0.130 (95% CI: 0.73-0.219), increasing significantly to 0.628 (95% CI: 0.439 to 0.784) when a seizure occurred (P<0.001). Of the variables analyzed, only inpatient seizure rate influenced predictability (P<0.001) or recollection (P<0.001). These models reveal that patients were highly aware of their seizures, and in many cases, were able to make accurate predictions, for which seizure rate may be an important factor.

摘要

我们使用独立的广义混合效应模型,评估了 83 名接受视频/EEG 监测的成年癫痫患者的癫痫发作回忆和预测,以及相关的诊断变量。模型显示,当参与者预测癫痫发作时,概率等于 0.320(95%置信区间:0.149-0.558),明显高于负预测值(0.151,95%置信区间:0.71-0.228)。没有癫痫发作时,回忆的概率约为 0.130(95%置信区间:0.73-0.219),当发生癫痫发作时,回忆的概率显著增加到 0.628(95%置信区间:0.439-0.784)(P<0.001)。在分析的变量中,只有住院期间的癫痫发作率影响可预测性(P<0.001)或回忆率(P<0.001)。这些模型表明,患者对自己的癫痫发作具有高度的意识,在许多情况下,能够做出准确的预测,而癫痫发作率可能是一个重要因素。

相似文献

1
Seizure prediction and recall.发作预测和发作后回忆。
Epilepsy Behav. 2010 May;18(1-2):106-9. doi: 10.1016/j.yebeh.2010.03.011. Epub 2010 May 10.
7
Modeling seizure self-prediction: an e-diary study.癫痫自我预测模型:电子日记研究。
Epilepsia. 2013 Nov;54(11):1960-7. doi: 10.1111/epi.12355. Epub 2013 Sep 20.

引用本文的文献

6
A library of quantitative markers of seizure severity.癫痫严重程度的定量标志物库。
Epilepsia. 2023 Apr;64(4):1074-1086. doi: 10.1111/epi.17525. Epub 2023 Feb 17.
9
Modeling seizure self-prediction: an e-diary study.癫痫自我预测模型:电子日记研究。
Epilepsia. 2013 Nov;54(11):1960-7. doi: 10.1111/epi.12355. Epub 2013 Sep 20.
10
Toward new paradigms of seizure detection.迈向新的癫痫发作检测范式。
Epilepsy Behav. 2013 Mar;26(3):247-52. doi: 10.1016/j.yebeh.2012.10.027. Epub 2012 Dec 12.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验