Suppr超能文献

部分性癫痫发作时皮质脑电图的相空间拓扑结构和李雅普诺夫指数

Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures.

作者信息

Iasemidis L D, Sackellares J C, Zaveri H P, Williams W J

机构信息

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor.

出版信息

Brain Topogr. 1990 Spring;2(3):187-201. doi: 10.1007/BF01140588.

Abstract

Electrocorticograms (ECoG's) from 16 of 68 chronically implanted subdural electrodes, placed over the right temporal cortex in a patient with a right medial temporal focus, were analyzed using methods from nonlinear dynamics. A time series provides information about a large number of pertinent variables, which may be used to explore and characterize the system's dynamics. These variables and their evolution in time produce the phase portrait of the system. The phase spaces for each of 16 electrodes were constructed and from these the largest average Lyapunov exponents (L's), measures of chaoticity of the system (the larger the L, the more chaotic the system is), were estimated over time for every electrode before, in and after the epileptic seizure for three seizures of the same patient. The start of the seizure corresponds to a simultaneous drop in L values obtained at the electrodes nearest the focus. L values for the rest of the electrodes follow. The mean values of L for all electrodes in the postictal state are larger than the ones in the preictal state, denoting a more chaotic state postictally. The lowest values of L occur during the seizure but they are still positive denoting the presence of a chaotic attractor. Based on the procedure for the estimation of L we were able to develop a methodology for detecting prominent spikes in the ECoG. These measures (L*) calculated over a period of time (10 minutes before to 10 minutes after the seizure outburst) revealed a remarkable coherence of the abrupt transient drops of L* for the electrodes that showed the initial ictal onset. The L* values for the electrodes away from the focus exhibited less abrupt transient drops. These results indicate that the largest average Lyapunov exponent L can be useful in seizure detection as well as a discriminatory factor for focus localization in multielectrode analysis.

摘要

对一名右内侧颞叶病灶患者右侧颞叶皮质上长期植入的68个硬膜下电极中的16个进行了皮质脑电图(ECoG)分析,采用非线性动力学方法。时间序列提供了大量相关变量的信息,这些变量可用于探索和表征系统的动力学。这些变量及其随时间的演变产生了系统的相图。构建了16个电极中每个电极的相空间,并据此估计了同一患者三次癫痫发作前、发作中和发作后每个电极随时间的最大平均李雅普诺夫指数(L),L是系统混沌程度的度量(L越大,系统越混沌)。癫痫发作开始时,最靠近病灶的电极处获得的L值会同时下降。其余电极的L值随后下降。发作后状态下所有电极的L平均值大于发作前状态下的L平均值,表明发作后状态更混沌。L的最低值出现在癫痫发作期间,但仍为正值,表明存在混沌吸引子。基于L的估计程序,我们能够开发一种检测ECoG中突出尖峰的方法。在一段时间(癫痫发作爆发前10分钟至发作后10分钟)内计算的这些度量(L*)显示,显示初始发作起始的电极的L突然瞬态下降具有显著的一致性。远离病灶的电极的L值显示出较不突然的瞬态下降。这些结果表明,最大平均李雅普诺夫指数L在癫痫发作检测以及多电极分析中病灶定位的鉴别因素方面可能有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验