Suppr超能文献

长期前瞻性在线实时癫痫发作预测。

Long-term prospective on-line real-time seizure prediction.

作者信息

Iasemidis L D, Shiau D-S, Pardalos P M, Chaovalitwongse W, Narayanan K, Prasad A, Tsakalis K, Carney P R, Sackellares J C

机构信息

Department of Bioengineering, Arizona State University, Tempe, AZ, USA.

出版信息

Clin Neurophysiol. 2005 Mar;116(3):532-44. doi: 10.1016/j.clinph.2004.10.013. Epub 2005 Jan 6.

Abstract

OBJECTIVE

Epilepsy, one of the most common neurological disorders, constitutes a unique opportunity to study the dynamics of spatiotemporal state transitions in real, complex, nonlinear dynamical systems. In this study, we evaluate the performance of a prospective on-line real-time seizure prediction algorithm in two patients from a common database.

METHODS

We previously demonstrated that measures of chaos and angular frequency, estimated from electroencephalographic (EEG) signals recorded at critical sites in the cerebral cortex, progressively converge (i.e. become dynamically entrained) as the epileptic brain transits from the asymptomatic interictal state to the ictal state (seizure) (Iasemidis et al., 2001, 2002a, 2003a). This observation suggested the possibility of developing algorithms to predict seizures well ahead of their occurrences. One of the central points in those investigations was the application of optimization theory, specifically quadratic zero-one programming, for the selection of the critical cortical sites. This current study combines that observation with a dynamical entrainment detection method to prospectively predict epileptic seizures. The algorithm was tested in two patients with long-term (107.54h) and multi-seizure EEG data B and C (Lehnertz and Litt, 2004).

RESULTS

Analysis from the 2 test patients resulted in the prediction of up to 91.3% of the impending 23 seizures, about 89+/-15min prior to seizure onset, with an average false warning rate of one every 8.27h and an allowable prediction horizon of 3h.

CONCLUSIONS

The algorithm provides warning of impending seizures prospectively and in real time, that is, it constitutes an on-line and real-time seizure prediction scheme.

SIGNIFICANCE

These results suggest that the proposed seizure prediction algorithm could be used in novel diagnostic and therapeutic applications in epileptic patients.

摘要

目的

癫痫是最常见的神经系统疾病之一,为研究真实、复杂的非线性动力系统中的时空状态转换动态提供了独特契机。在本研究中,我们在一个公共数据库的两名患者中评估了一种前瞻性在线实时癫痫发作预测算法的性能。

方法

我们之前证明,从大脑皮层关键部位记录的脑电图(EEG)信号估计的混沌和角频率测量值,会随着癫痫大脑从无症状发作间期状态转变为发作期状态(癫痫发作)而逐渐收敛(即动态同步)(Iasemidis等人,2001年、2002a、2003a)。这一观察结果提示了开发能够在癫痫发作发生前很久就进行预测的算法的可能性。这些研究的核心要点之一是应用优化理论,特别是二次零一规划,来选择关键的皮层部位。本研究将这一观察结果与一种动态同步检测方法相结合,以前瞻性地预测癫痫发作。该算法在两名拥有长期(107.54小时)多发作EEG数据的患者B和C身上进行了测试(Lehnertz和Litt,2004)。

结果

对这两名测试患者的分析预测出了即将发生的23次癫痫发作中的91.3%,平均在癫痫发作开始前约89±15分钟,平均误报率为每8.27小时一次,允许的预测范围为3小时。

结论

该算法能前瞻性地实时提供即将发生癫痫发作的预警,即它构成了一种在线实时癫痫发作预测方案。

意义

这些结果表明,所提出的癫痫发作预测算法可用于癫痫患者的新型诊断和治疗应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验