Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Genetics. 2010 Aug;185(4):1345-54. doi: 10.1534/genetics.110.115030. Epub 2010 May 10.
Much of population genetics is based on the diffusion limit of the Wright-Fisher model, which assumes a fixed population size. This assumption is violated in most natural populations, particularly for microbes. Here we study a more realistic model that decouples birth and death events and allows for a stochastically varying population size. Under this model, classical quantities such as the probability of and time before fixation of a mutant allele can differ dramatically from their Wright-Fisher expectations. Moreover, inferences about natural selection based on Wright-Fisher assumptions can yield erroneous and even contradictory conclusions: at small population densities one allele will appear superior, whereas at large densities the other allele will dominate. Consequently, competition assays in laboratory conditions may not reflect the outcome of long-term evolution in the field. These results highlight the importance of incorporating demographic stochasticity into basic models of population genetics.
群体遗传学的很大一部分内容基于 Wright-Fisher 模型的扩散极限,该模型假设种群大小固定。这一假设在大多数自然种群中被违反,特别是对于微生物。在这里,我们研究了一个更现实的模型,该模型将出生和死亡事件解耦,并允许种群大小随机变化。在这个模型下,经典的数量,如突变等位基因固定的概率和时间,可以与 Wright-Fisher 的预期有很大的不同。此外,基于 Wright-Fisher 假设的自然选择推断可能会产生错误甚至矛盾的结论:在小种群密度下,一个等位基因将表现出优越性,而在大种群密度下,另一个等位基因将占主导地位。因此,实验室条件下的竞争实验可能无法反映野外长期进化的结果。这些结果强调了将人口统计学中的随机波动纳入基本人口遗传模型的重要性。