Coron Camille, Méléard Sylvie, Villemonais Denis
Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France.
CMAP, CNRS, Ecole Polytechnique, route de Saclay, 91128, Palaiseau, France.
J Math Biol. 2019 Feb;78(3):549-577. doi: 10.1007/s00285-018-1283-1. Epub 2018 Aug 25.
In this article we consider diffusion processes modeling the dynamics of multiple allelic proportions (with fixed and varying population size). We are interested in the way alleles extinctions and fixations occur. We first prove that for the Wright-Fisher diffusion process with selection, alleles get extinct successively (and not simultaneously), until the fixation of one last allele. Then we introduce a very general model with selection, competition and Mendelian reproduction, derived from the rescaling of a discrete individual-based dynamics. This multi-dimensional diffusion process describes the dynamics of the population size as well as the proportion of each type in the population. We prove first that alleles extinctions occur successively and second that depending on population size dynamics near extinction, fixation can occur either before extinction almost surely, or not. The proofs of these different results rely on stochastic time changes, integrability of one-dimensional diffusion processes paths and multi-dimensional Girsanov's tranform.
在本文中,我们考虑对多个等位基因比例动态(种群大小固定和变化)进行建模的扩散过程。我们关注等位基因灭绝和固定发生的方式。我们首先证明,对于具有选择的赖特 - 费希尔扩散过程,等位基因是相继灭绝(而非同时灭绝),直到最后一个等位基因固定。然后我们引入一个具有选择、竞争和孟德尔繁殖的非常一般的模型,该模型源自基于个体的离散动态的重标度。这个多维扩散过程描述了种群大小的动态以及种群中每种类型的比例。我们首先证明等位基因相继灭绝,其次证明取决于灭绝附近的种群大小动态,固定可能几乎肯定在灭绝之前发生,也可能不发生。这些不同结果的证明依赖于随机时间变换、一维扩散过程路径的可积性以及多维吉尔萨诺夫变换。