Suppr超能文献

使用基因表达数据和作为二元分类器的潜在变量模型对多类肿瘤分类的两种输出编码策略的比较。

Comparison of two output-coding strategies for multi-class tumor classification using gene expression data and Latent Variable Model as binary classifier.

作者信息

Joseph Sandeep J, Robbins Kelly R, Zhang Wensheng, Rekaya Romdhane

机构信息

Rhodes Centre for Animal and Dairy Science, University of Georgia, Athens, GA 30605, USA.

出版信息

Cancer Inform. 2010 Mar 10;9:39-48. doi: 10.4137/cin.s3827.

Abstract

Multi-class cancer classification based on microarray data is described. A generalized output-coding scheme based on One Versus One (OVO) combined with Latent Variable Model (LVM) is used. Results from the proposed One Versus One (OVO) outputcoding strategy is compared with the results obtained from the generalized One Versus All (OVA) method and their efficiencies of using them for multi-class tumor classification have been studied. This comparative study was done using two microarray gene expression data: Global Cancer Map (GCM) dataset and brain cancer (BC) dataset. Primary feature selection was based on fold change and penalized t-statistics. Evaluation was conducted with varying feature numbers. The OVO coding strategy worked quite well with the BC data, while both OVO and OVA results seemed to be similar for the GCM data. The selection of output coding methods for combining binary classifiers for multi-class tumor classification depends on the number of tumor types considered, the discrepancies between the tumor samples used for training as well as the heterogeneity of expression within the cancer subtypes used as training data.

摘要

本文描述了基于微阵列数据的多类别癌症分类方法。使用了一种基于一对多(OVO)并结合潜在变量模型(LVM)的广义输出编码方案。将所提出的一对多(OVO)输出编码策略的结果与从广义的一对一(OVA)方法获得的结果进行了比较,并研究了它们在多类别肿瘤分类中的使用效率。这项比较研究使用了两个微阵列基因表达数据集:全球癌症图谱(GCM)数据集和脑癌(BC)数据集。主要特征选择基于倍数变化和惩罚t统计量。评估在不同特征数量下进行。OVO编码策略在BC数据上表现良好,而对于GCM数据,OVO和OVA的结果似乎相似。为多类别肿瘤分类组合二元分类器时输出编码方法的选择取决于所考虑的肿瘤类型数量、用于训练的肿瘤样本之间的差异以及用作训练数据的癌症亚型内表达的异质性。

相似文献

本文引用的文献

1
Gene selection for brain cancer classification.用于脑癌分类的基因选择
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5846-9. doi: 10.1109/IEMBS.2006.260197.
8
Multiclass cancer diagnosis using tumor gene expression signatures.利用肿瘤基因表达特征进行多类癌症诊断。
Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15149-54. doi: 10.1073/pnas.211566398. Epub 2001 Dec 11.
9
Predicting the clinical status of human breast cancer by using gene expression profiles.利用基因表达谱预测人类乳腺癌的临床状态。
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11462-7. doi: 10.1073/pnas.201162998. Epub 2001 Sep 18.
10
Molecular classification of multiple tumor types.多种肿瘤类型的分子分类
Bioinformatics. 2001;17 Suppl 1:S316-22. doi: 10.1093/bioinformatics/17.suppl_1.s316.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验