Suppr超能文献

利用领域知识进行可解释和有竞争力的多类人体活动识别。

Using Domain Knowledge for Interpretable and Competitive Multi-Class Human Activity Recognition.

机构信息

Insight Centre for Data Analytics, School of Computer Science and Information Technology, University College Cork, T12 XF62 Cork, Ireland.

Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland.

出版信息

Sensors (Basel). 2020 Feb 22;20(4):1208. doi: 10.3390/s20041208.

Abstract

Human activity recognition (HAR) has become an increasingly popular application of machine learning across a range of domains. Typically the HAR task that a machine learning algorithm is trained for requires separating multiple activities such as walking, running, sitting, and falling from each other. Despite a large body of work on multi-class HAR, and the well-known fact that the performance on a multi-class problem can be significantly affected by how it is decomposed into a set of binary problems, there has been little research into how the choice of multi-class decomposition method affects the performance of HAR systems. This paper presents the first empirical comparison of multi-class decomposition methods in a HAR context by estimating the performance of five machine learning algorithms when used in their multi-class formulation, with four popular multi-class decomposition methods, five expert hierarchies-nested dichotomies constructed from domain knowledge-or an ensemble of expert hierarchies on a 17-class HAR data-set which consists of features extracted from tri-axial accelerometer and gyroscope signals. We further compare performance on two binary classification problems, each based on the topmost dichotomy of an expert hierarchy. The results show that expert hierarchies can indeed compete with one-vs-all, both on the original multi-class problem and on a more general binary classification problem, such as that induced by an expert hierarchy's topmost dichotomy. Finally, we show that an ensemble of expert hierarchies performs better than one-vs-all and comparably to one-vs-one, despite being of lower time and space complexity, on the multi-class problem, and outperforms all other multi-class decomposition methods on the two dichotomous problems.

摘要

人体活动识别(HAR)已经成为机器学习在多个领域中越来越受欢迎的应用。通常,机器学习算法所训练的 HAR 任务需要将行走、跑步、坐着和摔倒等多种活动彼此区分开来。尽管已经有大量关于多类 HAR 的研究,并且众所周知,多类问题的性能会受到如何将其分解为一组二进制问题的显著影响,但对于多类分解方法的选择如何影响 HAR 系统的性能的研究却很少。本文通过在 17 类 HAR 数据集上使用五种机器学习算法在其多类公式中的性能,对多类分解方法进行了首次实证比较,该数据集由三轴加速度计和陀螺仪信号提取的特征组成。该数据集使用了四种流行的多类分解方法、五个由领域知识构建的专家层次结构-嵌套二分法,或专家层次结构的集合。我们进一步比较了基于专家层次结构的最顶层二分法的两个二进制分类问题上的性能。结果表明,专家层次结构确实可以与一对一竞争,无论是在原始多类问题上还是在更通用的二进制分类问题上,例如专家层次结构的最顶层二分法诱导的问题。最后,我们表明,尽管在多类问题上的时间和空间复杂度较低,但专家层次结构的集合在多类问题上的性能优于一对一,并与一对一相当,并且在两个二分问题上均优于所有其他多类分解方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d81/7070332/d2a5930f6371/sensors-20-01208-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验