Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA 70112, USA.
Virol J. 2010 May 10;7:93. doi: 10.1186/1743-422X-7-93.
Many pathogens exist in multiple physiological niches within the host. Differences between aerobic and anaerobic conditions are known to alter the expression of bacterial virulence factors, typically through the conditional activity of transactivators that modulate their expression. More recently, changes in physiological niches have been shown to affect the expression of viral genes. For many viruses, differences in oxygen tension between hypoxia and normoxia alter gene expression or function. Oxygen tension also affects many mammalian transactivators including AP-1, NFkB, and p53 by affecting the reduced state of critical cysteines in these proteins. We have recently determined that an essential cys-x-x-cys motif in the EBNA1 transactivator of Epstein-Barr virus is redox-regulated, such that transactivation is favoured under reducing conditions. The crucial Tat transactivator of human immunodeficiency virus (HIV) has an essential cysteine-rich region, and is also regulated by redox. Contrary to EBNA1, it is reported that Tat's activity is increased by oxidative stress. Here we have compared the effects of hypoxia, oxidative stress, and cellular redox modulators on EBNA1 and Tat.
Our results indicate that unlike EBNA1, Tat is less active during hypoxia. Agents that generate hydroxyl and superoxide radicals reduce EBNA1's activity but increase transactivation by Tat. The cellular redox modulator, APE1/Ref-1, increases EBNA1's activity, without any effect on Tat. Conversely, thioredoxin reductase 1 (TRR1) reduces Tat's function without any effect on EBNA1.
We conclude that oxygen partial pressure and oxidative stress affects the functions of EBNA1 and Tat in a dramatically opposed fashion. Tat is more active during oxidative stress, whereas EBNA1's activity is compromised under these conditions. The two proteins respond to differing cellular redox modulators, suggesting that the oxidized cysteine adduct is a disulfide bond(s) in Tat, but sulfenic acid in EBNA1. The effect of oxygen partial pressure on transactivator function suggests that changes in redox may underlie differences in virus-infected cells dependent upon the physiological niches they traffic to.
许多病原体在宿主的多个生理小生境中存在。已知需氧和厌氧条件之间的差异会改变细菌毒力因子的表达,通常通过调节其表达的反式激活剂的条件活性来实现。最近,生理小生境的变化已被证明会影响病毒基因的表达。对于许多病毒,缺氧与正常氧张力之间的差异会改变基因表达或功能。氧张力还通过影响这些蛋白质中关键半胱氨酸的还原状态来影响许多哺乳动物反式激活剂,包括 AP-1、NFkB 和 p53。我们最近确定,EB 病毒 EBNA1 反式激活剂中的一个必需的 Cys-x-x-Cys 基序是氧化还原调节的,因此在还原条件下有利于反式激活。人类免疫缺陷病毒 (HIV) 的关键 Tat 反式激活剂具有必需的富含半胱氨酸的区域,并且也受到氧化还原的调节。与 EBNA1 相反,据报道 Tat 的活性会因氧化应激而增加。在这里,我们比较了缺氧、氧化应激和细胞氧化还原调节剂对 EBNA1 和 Tat 的影响。
我们的结果表明,与 EBNA1 不同,Tat 在缺氧期间活性较低。产生羟基和超氧自由基的试剂降低了 EBNA1 的活性,但增加了 Tat 的反式激活。细胞氧化还原调节剂 APE1/Ref-1 增加了 EBNA1 的活性,而对 Tat 没有任何影响。相反,硫氧还蛋白还原酶 1 (TRR1) 降低了 Tat 的功能,而对 EBNA1 没有任何影响。
我们得出结论,氧分压和氧化应激以截然不同的方式影响 EBNA1 和 Tat 的功能。Tat 在氧化应激期间更活跃,而 EBNA1 的活性在这些条件下受到损害。这两种蛋白质对不同的细胞氧化还原调节剂有反应,表明 Tat 的氧化半胱氨酸加合物是二硫键,而 EBNA1 则是亚磺酸。氧分压对反式激活剂功能的影响表明,氧化还原的变化可能是病毒感染细胞在其流经的生理小生境中存在差异的基础。