Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans, LA 70112, USA.
Math Biosci. 2010 Aug;226(2):77-96. doi: 10.1016/j.mbs.2010.05.001. Epub 2010 May 10.
Limit cycle oscillators that are coupled in a pulsatile manner are referred to as pulse coupled oscillators. In these oscillators, the interactions take the form of brief pulses such that the effect of one input dies out before the next is received. A phase resetting curve (PRC) keeps track of how much an input advances or delays the next spike in an oscillatory neuron depending upon where in the cycle the input is applied. PRCs can be used to predict phase locking in networks of pulse coupled oscillators. In some studies of pulse coupled oscillators, a specific form is assumed for the interactions between oscillators, but a more general approach is to formulate the problem assuming a PRC that is generated using a perturbation that approximates the input received in the real biological network. In general, this approach requires that circuit architecture and a specific firing pattern be assumed. This allows the construction of discrete maps from one event to the next. The fixed points of these maps correspond to periodic firing modes and are easier to locate and analyze for stability compared to locating and analyzing periodic modes in the original network directly. Alternatively, maps based on the PRC have been constructed that do not presuppose a firing order. Specific circuits that have been analyzed under the assumption of pulsatile coupling include one to one lockings in a periodically forced oscillator or an oscillator forced at a fixed delay after a threshold event, two bidirectionally coupled oscillators with and without delays, a unidirectional N-ring of oscillators, and N all-to-all networks.
以脉冲方式耦合的极限环振荡器被称为脉冲耦合振荡器。在这些振荡器中,相互作用的形式是短暂的脉冲,以至于一个输入的效果在接收到下一个输入之前就消失了。相位复位曲线 (PRC) 跟踪输入在振荡神经元中的下一个尖峰之前提前或延迟了多少,具体取决于输入在周期中的位置。PRC 可用于预测脉冲耦合振荡器网络中的相位锁定。在脉冲耦合振荡器的一些研究中,假设振荡器之间的相互作用具有特定的形式,但更一般的方法是通过假设使用近似于在真实生物网络中接收到的输入的微扰生成的 PRC 来制定问题。一般来说,这种方法需要假设电路结构和特定的触发模式。这允许从一个事件到下一个事件构建离散映射。这些映射的固定点对应于周期性触发模式,与直接在原始网络中定位和分析周期性模式相比,更容易定位和分析稳定性。或者,已经构建了基于 PRC 的映射,这些映射不假设触发顺序。在脉冲耦合的假设下进行了分析的特定电路包括在周期性受迫振荡器中或在阈值事件后固定延迟处受迫的振荡器中的一一锁定、具有和不具有延迟的两个双向耦合振荡器、一个单向 N 个振荡器环和 N 个全连接网络。