Suppr超能文献

脉冲耦合振荡器和相位复位曲线。

Pulse coupled oscillators and the phase resetting curve.

机构信息

Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans, LA 70112, USA.

出版信息

Math Biosci. 2010 Aug;226(2):77-96. doi: 10.1016/j.mbs.2010.05.001. Epub 2010 May 10.

Abstract

Limit cycle oscillators that are coupled in a pulsatile manner are referred to as pulse coupled oscillators. In these oscillators, the interactions take the form of brief pulses such that the effect of one input dies out before the next is received. A phase resetting curve (PRC) keeps track of how much an input advances or delays the next spike in an oscillatory neuron depending upon where in the cycle the input is applied. PRCs can be used to predict phase locking in networks of pulse coupled oscillators. In some studies of pulse coupled oscillators, a specific form is assumed for the interactions between oscillators, but a more general approach is to formulate the problem assuming a PRC that is generated using a perturbation that approximates the input received in the real biological network. In general, this approach requires that circuit architecture and a specific firing pattern be assumed. This allows the construction of discrete maps from one event to the next. The fixed points of these maps correspond to periodic firing modes and are easier to locate and analyze for stability compared to locating and analyzing periodic modes in the original network directly. Alternatively, maps based on the PRC have been constructed that do not presuppose a firing order. Specific circuits that have been analyzed under the assumption of pulsatile coupling include one to one lockings in a periodically forced oscillator or an oscillator forced at a fixed delay after a threshold event, two bidirectionally coupled oscillators with and without delays, a unidirectional N-ring of oscillators, and N all-to-all networks.

摘要

以脉冲方式耦合的极限环振荡器被称为脉冲耦合振荡器。在这些振荡器中,相互作用的形式是短暂的脉冲,以至于一个输入的效果在接收到下一个输入之前就消失了。相位复位曲线 (PRC) 跟踪输入在振荡神经元中的下一个尖峰之前提前或延迟了多少,具体取决于输入在周期中的位置。PRC 可用于预测脉冲耦合振荡器网络中的相位锁定。在脉冲耦合振荡器的一些研究中,假设振荡器之间的相互作用具有特定的形式,但更一般的方法是通过假设使用近似于在真实生物网络中接收到的输入的微扰生成的 PRC 来制定问题。一般来说,这种方法需要假设电路结构和特定的触发模式。这允许从一个事件到下一个事件构建离散映射。这些映射的固定点对应于周期性触发模式,与直接在原始网络中定位和分析周期性模式相比,更容易定位和分析稳定性。或者,已经构建了基于 PRC 的映射,这些映射不假设触发顺序。在脉冲耦合的假设下进行了分析的特定电路包括在周期性受迫振荡器中或在阈值事件后固定延迟处受迫的振荡器中的一一锁定、具有和不具有延迟的两个双向耦合振荡器、一个单向 N 个振荡器环和 N 个全连接网络。

相似文献

1
Pulse coupled oscillators and the phase resetting curve.
Math Biosci. 2010 Aug;226(2):77-96. doi: 10.1016/j.mbs.2010.05.001. Epub 2010 May 10.
2
Effects of conduction delays on the existence and stability of one to one phase locking between two pulse-coupled oscillators.
J Comput Neurosci. 2011 Oct;31(2):401-18. doi: 10.1007/s10827-011-0315-2. Epub 2011 Feb 23.
3
A mean field theory for pulse-coupled neural oscillators based on the spike time response curve.
J Neurophysiol. 2025 Jun 1;133(6):1630-1640. doi: 10.1152/jn.00045.2025. Epub 2025 Apr 29.
6
Effect of phase response curve skew on synchronization with and without conduction delays.
Front Neural Circuits. 2013 Dec 11;7:194. doi: 10.3389/fncir.2013.00194. eCollection 2013.
7
Stability of two cluster solutions in pulse coupled networks of neural oscillators.
J Comput Neurosci. 2011 Apr;30(2):427-45. doi: 10.1007/s10827-010-0268-x. Epub 2010 Aug 20.
8
Slow noise in the period of a biological oscillator underlies gradual trends and abrupt transitions in phasic relationships in hybrid neural networks.
PLoS Comput Biol. 2014 May 15;10(5):e1003622. doi: 10.1371/journal.pcbi.1003622. eCollection 2014 May.
9
Synaptic and intrinsic determinants of the phase resetting curve for weak coupling.
J Comput Neurosci. 2011 Apr;30(2):373-90. doi: 10.1007/s10827-010-0264-1. Epub 2010 Aug 11.
10
Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved.
J Comput Neurosci. 2008 Feb;24(1):37-55. doi: 10.1007/s10827-007-0040-z. Epub 2007 Jun 19.

引用本文的文献

1
A mean field theory for pulse-coupled neural oscillators based on the spike time response curve.
J Neurophysiol. 2025 Jun 1;133(6):1630-1640. doi: 10.1152/jn.00045.2025. Epub 2025 Apr 29.
3
Optimal synchronization in pulse-coupled oscillator networks using reinforcement learning.
PNAS Nexus. 2023 Mar 27;2(4):pgad102. doi: 10.1093/pnasnexus/pgad102. eCollection 2023 Apr.
4
SK and Kv4 Channels Limit Spike Timing Perturbations in Pacemaking Dopamine Neurons.
eNeuro. 2023 Apr 10;10(4). doi: 10.1523/ENEURO.0445-22.2023. Print 2023 Apr.
6
Phase response approaches to neural activity models with distributed delay.
Biol Cybern. 2022 Apr;116(2):191-203. doi: 10.1007/s00422-021-00910-9. Epub 2021 Dec 2.
7
Differential contributions of synaptic and intrinsic inhibitory currents to speech segmentation via flexible phase-locking in neural oscillators.
PLoS Comput Biol. 2021 Apr 14;17(4):e1008783. doi: 10.1371/journal.pcbi.1008783. eCollection 2021 Apr.
8
First-order synchronization transition in a large population of strongly coupled relaxation oscillators.
Sci Adv. 2020 Sep 23;6(39). doi: 10.1126/sciadv.abb2637. Print 2020 Sep.
10
Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling.
Phys Rev E. 2017 Mar;95(3-1):032215. doi: 10.1103/PhysRevE.95.032215. Epub 2017 Mar 16.

本文引用的文献

1
Control of multistability in ring circuits of oscillators.
Biol Cybern. 1999 Feb;80(2):87-102. doi: 10.1007/s004220050507.
3
Human memory strength is predicted by theta-frequency phase-locking of single neurons.
Nature. 2010 Apr 8;464(7290):903-7. doi: 10.1038/nature08860. Epub 2010 Mar 24.
4
Synchrony with shunting inhibition in a feedforward inhibitory network.
J Comput Neurosci. 2010 Apr;28(2):305-21. doi: 10.1007/s10827-009-0210-2. Epub 2010 Feb 6.
5
External trial deep brain stimulation device for the application of desynchronizing stimulation techniques.
J Neural Eng. 2009 Dec;6(6):066003. doi: 10.1088/1741-2560/6/6/066003. Epub 2009 Oct 16.
6
Predicting synchrony in heterogeneous pulse coupled oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021908. doi: 10.1103/PhysRevE.80.021908. Epub 2009 Aug 11.
8
Seizure abatement with single dc pulses: is phase resetting at play?
Int J Neural Syst. 2009 Jun;19(3):149-56. doi: 10.1142/S0129065709001926.
9
Functional phase response curves: a method for understanding synchronization of adapting neurons.
J Neurophysiol. 2009 Jul;102(1):387-98. doi: 10.1152/jn.00037.2009. Epub 2009 May 6.
10
Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction.
Neuroscience. 2009 Sep 1;162(3):797-804. doi: 10.1016/j.neuroscience.2009.04.045. Epub 2009 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验