Suppr超能文献

具有分布式延迟的神经活动模型的相位响应方法。

Phase response approaches to neural activity models with distributed delay.

作者信息

Winkler Marius, Dumont Grégory, Schöll Eckehard, Gutkin Boris

机构信息

Group for Neural Theory, LNC INSERM U960, DEC, Ecole Normale Supérieure PSL* University, 24 rue Lhomond, 75005, Paris, France.

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany.

出版信息

Biol Cybern. 2022 Apr;116(2):191-203. doi: 10.1007/s00422-021-00910-9. Epub 2021 Dec 2.

Abstract

In weakly coupled neural oscillator networks describing brain dynamics, the coupling delay is often distributed. We present a theoretical framework to calculate the phase response curve of distributed-delay induced limit cycles with infinite-dimensional phase space. Extending previous works, in which non-delayed or discrete-delay systems were investigated, we develop analytical results for phase response curves of oscillatory systems with distributed delay using Gaussian and log-normal delay distributions. We determine the scalar product and normalization condition for the linearized adjoint of the system required for the calculation of the phase response curve. As a paradigmatic example, we apply our technique to the Wilson-Cowan oscillator model of excitatory and inhibitory neuronal populations under the two delay distributions. We calculate and compare the phase response curves for the Gaussian and log-normal delay distributions. The phase response curves obtained from our adjoint calculations match those compiled by the direct perturbation method, thereby proving that the theory of weakly coupled oscillators can be applied successfully for distributed-delay-induced limit cycles. We further use the obtained phase response curves to derive phase interaction functions and determine the possible phase locked states of multiple inter-coupled populations to illuminate different synchronization scenarios. In numerical simulations, we show that the coupling delay distribution can impact the stability of the synchronization between inter-coupled gamma-oscillatory networks.

摘要

在描述大脑动力学的弱耦合神经振荡器网络中,耦合延迟通常是分布的。我们提出了一个理论框架,用于计算具有无限维相空间的分布延迟诱导极限环的相位响应曲线。扩展了之前研究无延迟或离散延迟系统的工作,我们利用高斯和对数正态延迟分布,得出了具有分布延迟的振荡系统相位响应曲线的解析结果。我们确定了计算相位响应曲线所需的系统线性化伴随的标量积和归一化条件。作为一个典型例子,我们将我们的技术应用于具有两种延迟分布的兴奋性和抑制性神经元群体的威尔逊 - 考恩振荡器模型。我们计算并比较了高斯和对数正态延迟分布的相位响应曲线。通过我们的伴随计算得到的相位响应曲线与通过直接微扰法编制的曲线相匹配,从而证明了弱耦合振荡器理论可以成功应用于分布延迟诱导的极限环。我们进一步利用得到的相位响应曲线推导出相位相互作用函数,并确定多个相互耦合群体的可能锁相状态,以阐明不同的同步场景。在数值模拟中,我们表明耦合延迟分布会影响相互耦合的伽马振荡网络之间同步的稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验