UPMC Univ Paris 06, FRE3214, Génomique Analytique, 15 rue de l'Ecole de Médecine, Paris, France.
Mol Syst Biol. 2010 May 11;6:366. doi: 10.1038/msb.2010.21.
The structure of dynamic folds in microbial chromosomes is largely unknown. Here, we find that genes with a highly biased codon composition and characterizing a functional core in Escherichia coli K12 show to be periodically distributed along the arcs, suggesting an encoded three-dimensional genomic organization helping functional activities among which are translation and, possibly, transcription. This extends to functional classes of genes that are shown to systematically organize into two independent positional gene networks, one driven by metabolic genes and the other by genes involved in cellular processing and signaling. We conclude that functional reasons justify periodic gene organization. This finding generates new questions on evolutionary pressures imposed on the chromosome. Our methodological approach is based on single genome analysis. Given either core genes or genes organized in functional classes, we analyze the detailed distribution of distances between pairs of genes through a parameterized model based on signal processing and find that these groups of genes tend to be separated by a regular integral distance. The methodology can be applied to any set of genes and can be taken as a footprint for large-scale bacterial and archaeal analysis.
微生物染色体中动态折叠的结构在很大程度上是未知的。在这里,我们发现具有高度偏向密码子组成的基因,并且是大肠杆菌 K12 功能核心的特征,这些基因沿着弧周期性分布,表明编码的三维基因组组织有助于翻译和可能的转录等功能活动。这扩展到功能类基因,这些基因系统地组织成两个独立的位置基因网络,一个由代谢基因驱动,另一个由参与细胞处理和信号转导的基因驱动。我们得出结论,功能原因证明了周期性基因组织的合理性。这一发现产生了关于染色体上施加的进化压力的新问题。我们的方法基于单个基因组分析。无论是核心基因还是按功能分类的基因,我们都通过基于信号处理的参数化模型分析基因对之间距离的详细分布,并发现这些基因群倾向于被规则的整数距离隔开。该方法可应用于任何一组基因,并可作为大规模细菌和古菌分析的特征。