Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
Eur J Pharmacol. 2010 Aug 25;640(1-3):185-9. doi: 10.1016/j.ejphar.2010.04.058. Epub 2010 May 10.
To verify the recently proposed concept that mast cell-derived renin facilitates angiotensin II-induced bronchoconstriction bronchial rings from male Sprague-Dawley rats were mounted in Mulvany myographs, and exposed to the mast cell degranulator compound 48/80 (300 microg/ml), angiotensin I, angiotensin II, bradykinin or serotonin (5-hydroxytryptamine, 5-HT), in the absence or presence of the renin inhibitor aliskiren (10 micromol/l), the ACE inhibitor captopril (10 micromol/l), the angiotensin II type 1 (AT1) receptor blocker irbesartan (1 micromol/l), the mast cell stabilizer cromolyn (0.3 mmol/l), the 5-HT2A/2C receptor antagonist ketanserin (0.1 micromol/l) or the alpha1-adrenoceptor antagonist phentolamine (1 micromol/l). Bath fluid was collected to verify angiotensin generation. Bronchial tissue was homogenized to determine renin, angiotensinogen and serotonin content. Compound 48/80 contracted bronchi to 24+/-4% of the KCl-induced contraction. Ketanserin fully abolished this effect, while cromolyn reduced the contraction to 16+/-5%. Aliskiren, captopril, irbesartan and phentolamine did not affect this response, and the angiotensin I and II levels in the bath fluid after 48/80 exposure were below the detection limit. Angiotensin I and II equipotently contracted bronchi. Captopril shifted the angiotensin I curve approximately 10-fold to the right, whereas irbesartan fully blocked the effect of angiotensin II. Bradykinin-induced constriction was shifted approximately 100-fold to the left with captopril. Serotonin contracted bronchi, and ketanserin fully blocked this effect. Finally, bronchial tissue contained serotonin at micromolar levels, whereas renin and angiotensinogen were undetectable in this preparation. In conclusion, mast cell degranulation results in serotonin-induced bronchoconstriction, and is unlikely to involve renin-induced angiotensin generation.
为了验证最近提出的观点,即肥大细胞衍生的肾素有助于血管紧张素 II 诱导的支气管收缩,从雄性 Sprague-Dawley 大鼠中取出支气管环,置于 Mulvany 肌描记器中,并暴露于肥大细胞脱颗粒化合物 48/80(300μg/ml)、血管紧张素 I、血管紧张素 II、缓激肽或 5-羟色胺(5-羟色胺),在没有或存在肾素抑制剂阿利克仑(10μmol/l)、血管紧张素转换酶抑制剂卡托普利(10μmol/l)、血管紧张素 II 型 1(AT1)受体阻滞剂厄贝沙坦(1μmol/l)、肥大细胞稳定剂色甘酸钠(0.3mmol/l)、5-羟色胺 2A/2C 受体拮抗剂酮色林(0.1μmol/l)或α1-肾上腺素受体拮抗剂酚妥拉明(1μmol/l)的情况下。收集浴液以验证血管紧张素的产生。将支气管组织匀浆以确定肾素、血管紧张素原和 5-羟色胺含量。化合物 48/80 将支气管收缩至 KCl 诱导收缩的 24+/-4%。酮色林完全消除了这种作用,而色甘酸钠将收缩降低至 16+/-5%。阿利克仑、卡托普利、厄贝沙坦和酚妥拉明对这种反应没有影响,暴露于 48/80 后浴液中的血管紧张素 I 和 II 水平低于检测限。血管紧张素 I 和 II 等强度地收缩支气管。卡托普利将血管紧张素 I 曲线向右约 10 倍移动,而厄贝沙坦完全阻断了血管紧张素 II 的作用。用卡托普利将缓激肽引起的收缩向左约 100 倍移动。5-羟色胺收缩支气管,酮色林完全阻断了这种作用。最后,支气管组织含有微摩尔水平的 5-羟色胺,而在这种制剂中未检测到肾素和血管紧张素原。总之,肥大细胞脱颗粒导致 5-羟色胺诱导的支气管收缩,不太可能涉及肾素诱导的血管紧张素生成。