Suppr超能文献

通过流动电势法表征合成纳米膜的表面电荷。

Characterizing the surface charge of synthetic nanomembranes by the streaming potential method.

机构信息

Department of Mechanical Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210, USA.

出版信息

J Colloid Interface Sci. 2010 Aug 1;348(1):85-95. doi: 10.1016/j.jcis.2010.04.017. Epub 2010 Apr 14.

Abstract

The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges.

摘要

从存在有限双电层(EDL)效应的流动电势测量中推断具有纳米级孔径的聚乙二醇(PEG)涂覆和未涂覆的硅膜的表面电荷,从理论和实验两方面进行了研究。从流动电势测量中推断孔壁表面电荷密度的开发理论模型适用于任意孔的横截面形状,并考虑了有限盐浓度对离子迁移率和 PEG 沉积层厚度的影响。对具有纳米级孔径的硅膜(带有/不带有 PEG 孔壁表面修饰)收集的流动电势数据的理论解释表明,在孔限制电解质中的有限双电层(EDL)效应会极大地影响膜电荷的解释,而 PEG 的表面修饰会导致孔壁表面电荷密度降低。该理论模型还用于研究在中等到强荷电孔中影响流动电势解释的以下独特纳米级因素的相对重要性:施加压力差引起的净电荷对流的改变、表面电荷对离子传导的影响以及电荷的电渗流。

相似文献

1
Characterizing the surface charge of synthetic nanomembranes by the streaming potential method.
J Colloid Interface Sci. 2010 Aug 1;348(1):85-95. doi: 10.1016/j.jcis.2010.04.017. Epub 2010 Apr 14.
2
Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041601. doi: 10.1103/PhysRevE.81.041601. Epub 2010 Apr 1.
3
Slit pores preferred over cylindrical pores for high selectivity in biomolecular filtration.
J Colloid Interface Sci. 2018 May 1;517:176-181. doi: 10.1016/j.jcis.2017.12.056. Epub 2017 Dec 20.
4
On the behavior of electrokinetic streaming potential during protein filtration with fully and partially retentive nanopores.
J Colloid Interface Sci. 2003 Aug 1;264(1):195-202. doi: 10.1016/s0021-9797(03)00352-7.
5
Characterization of the surface charge property and porosity of track-etched polymer membranes.
Electrophoresis. 2022 Dec;43(23-24):2428-2435. doi: 10.1002/elps.202200198. Epub 2022 Oct 27.
7
Effect of hydrofluoric acid (HF) concentration to pores size diameter of silicon membrane.
Biomed Mater Eng. 2014;24(6):2203-9. doi: 10.3233/BME-141032.
8
A structure-permeability relationship of ultrathin nanoporous silicon membrane: a comparison with the nuclear envelope.
J Am Chem Soc. 2008 Apr 2;130(13):4230-1. doi: 10.1021/ja711258w. Epub 2008 Mar 7.
10
Unexpected Behavior of Streaming Potential in Ion-Exchange Membranes.
Langmuir. 2024 Apr 9;40(14):7512-7519. doi: 10.1021/acs.langmuir.4c00027. Epub 2024 Mar 25.

引用本文的文献

1
Fluids and Electrolytes under Confinement in Single-Digit Nanopores.
Chem Rev. 2023 Mar 22;123(6):2737-2831. doi: 10.1021/acs.chemrev.2c00155. Epub 2023 Mar 10.
4
Silicon nanoporous membranes as a rigorous platform for validation of biomolecular transport models.
J Memb Sci. 2017 Aug 15;536:44-51. doi: 10.1016/j.memsci.2017.04.030. Epub 2017 Apr 17.
5
Basal lamina secreted by MDCK cells has size- and charge-selective properties.
Am J Physiol Renal Physiol. 2011 Jan;300(1):F86-90. doi: 10.1152/ajprenal.00484.2010. Epub 2010 Oct 27.

本文引用的文献

1
Theory of the stability of lyophobic colloids.
J Phys Colloid Chem. 1947 May;51(3):631-6. doi: 10.1021/j150453a001.
2
High-Performance Silicon Nanopore Hemofiltration Membranes.
J Memb Sci. 2009 Jan 5;326(1):58-63. doi: 10.1016/j.memsci.2008.09.039.
3
Electrochemical charge of silica surfaces at high ionic strength in narrow channels.
J Colloid Interface Sci. 2010 Mar 1;343(1):381-6. doi: 10.1016/j.jcis.2009.11.039. Epub 2009 Nov 23.
4
Biomolecular transport through hemofiltration membranes.
Ann Biomed Eng. 2009 Apr;37(4):722-36. doi: 10.1007/s10439-009-9642-0. Epub 2009 Jan 30.
5
Development of continuous implantable renal replacement: past and future.
Transl Res. 2007 Dec;150(6):327-36. doi: 10.1016/j.trsl.2007.06.001. Epub 2007 Jul 2.
6
Power generation by pressure-driven transport of ions in nanofluidic channels.
Nano Lett. 2007 Apr;7(4):1022-5. doi: 10.1021/nl070194h. Epub 2007 Mar 13.
7
Differentiated growth of human renal tubule cells on thin-film and nanostructured materials.
ASAIO J. 2006 May-Jun;52(3):221-7. doi: 10.1097/01.mat.0000205228.30516.9c.
8
CONDUCTANCE OF STRONG ELECTROLYTES AT FINITE DILUTIONS.
Proc Natl Acad Sci U S A. 1955 May 15;41(5):274-83. doi: 10.1073/pnas.41.5.274.
9
Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells.
Biomaterials. 2006 Jun;27(16):3075-83. doi: 10.1016/j.biomaterials.2005.12.017. Epub 2006 Feb 2.
10
Streaming currents in a single nanofluidic channel.
Phys Rev Lett. 2005 Sep 9;95(11):116104. doi: 10.1103/PhysRevLett.95.116104. Epub 2005 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验