Suppr超能文献

W 波段频率扫描电子顺磁共振。

W-band frequency-swept EPR.

机构信息

National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

出版信息

J Magn Reson. 2010 Jul;205(1):93-101. doi: 10.1016/j.jmr.2010.04.005. Epub 2010 Apr 13.

Abstract

This paper describes a novel experiment on nitroxide radical spin labels using a multiarm EPR W-band bridge with a loop-gap resonator (LGR). We demonstrate EPR spectroscopy of spin labels by linear sweep of the microwave frequency across the spectrum. The high bandwidth of the LGR, about 1 GHz between 3 dB points of the microwave resonance, makes this new experiment possible. A frequency-tunable yttrium iron garnet (YIG) oscillator provides sweep rates as high as 1.8x10(5) GHz/s, which corresponds to 6.3 kT/s in magnetic field-sweep units over a 44 MHz range. Two experimental domains were identified. In the first, linear frequency sweep rates were relatively slow, and pure absorption and pure dispersion spectra were obtained. This appears to be a practical mode of operation at the present level of technological development. The main advantage is the elimination of sinusoidal magnetic field modulation. In the second mode, the frequency is swept rapidly across a portion of the spectrum, and then the frequency sweep is stopped for a readout period; FID signals from a swept line oscillate at a frequency that is the difference between the spectral position of the line in frequency units and the readout position. If there is more than one line, oscillations are superimposed. The sweep rates using the YIG oscillator were too slow, and the portion of the spectrum too narrow to achieve the full EPR equivalent of Fourier transform (FT) NMR. The paper discusses technical advances required to reach this goal. The hypothesis that trapezoidal frequency sweep is an enabling technology for FT EPR is supported by this study.

摘要

本文描述了一种使用多臂 EPR W 波段桥与环形间隙谐振器 (LGR) 的氮氧自由基自旋标记物的新型实验。我们通过微波频率在频谱上的线性扫描来演示自旋标记物的 EPR 光谱。LGR 的高带宽,在微波共振的 3 dB 点之间约为 1 GHz,使得这个新实验成为可能。可调谐钇铁石榴石 (YIG) 振荡器提供高达 1.8x10(5) GHz/s 的扫描速率,这相当于在 44 MHz 范围内磁场扫描单位中 6.3 kT/s。确定了两个实验域。在第一个实验中,线性频率扫描速率相对较慢,并且获得了纯吸收和纯色散光谱。这似乎是在当前技术发展水平下的一种实际操作模式。主要优点是消除了正弦磁场调制。在第二种模式下,频率快速扫过频谱的一部分,然后停止频率扫描进行读出周期;来自扫描线的 FID 信号以频率单位中谱线位置与读出位置之间的差值振荡。如果有不止一条线,则会叠加振荡。使用 YIG 振荡器的扫描速率太慢,频谱的一部分太窄,无法实现傅里叶变换 (FT) NMR 的全 EPR 等效。本文讨论了达到这一目标所需的技术进步。该研究支持梯形频率扫描是 FT EPR 的一项使能技术的假设。

相似文献

1
W-band frequency-swept EPR.
J Magn Reson. 2010 Jul;205(1):93-101. doi: 10.1016/j.jmr.2010.04.005. Epub 2010 Apr 13.
3
Microwave frequency modulation in CW EPR at W-band using a loop-gap resonator.
J Magn Reson. 2007 Apr;185(2):259-63. doi: 10.1016/j.jmr.2007.01.002. Epub 2007 Jan 10.
4
Broadband W-band Rapid Frequency Sweep Considerations for Fourier Transform EPR.
Cell Biochem Biophys. 2017 Dec;75(3-4):259-273. doi: 10.1007/s12013-017-0804-7. Epub 2017 May 29.
5
Saturation recovery EPR and ELDOR at W-band for spin labels.
J Magn Reson. 2008 Aug;193(2):297-304. doi: 10.1016/j.jmr.2008.05.008. Epub 2008 May 20.
6
Rapid-scan EPR of immobilized nitroxides.
J Magn Reson. 2014 Oct;247:67-71. doi: 10.1016/j.jmr.2014.08.008. Epub 2014 Aug 30.
8
Background correction in rapid scan EPR spectroscopy.
J Magn Reson. 2018 Aug;293:1-8. doi: 10.1016/j.jmr.2018.05.010. Epub 2018 May 17.
9
Moving difference (MDIFF) non-adiabatic rapid sweep (NARS) EPR of copper(II).
J Magn Reson. 2013 Nov;236:15-25. doi: 10.1016/j.jmr.2013.08.004. Epub 2013 Aug 20.

引用本文的文献

1
Have We Been Teaching Continuous Wave EPR Correctly?
J Chem Educ. 2025 Jul 8;102(7):2695-2702. doi: 10.1021/acs.jchemed.5c00319. Epub 2025 Jun 25.
3
Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor.
Magn Reson (Gott). 2021 Aug 25;2(2):673-687. doi: 10.5194/mr-2-673-2021. eCollection 2021.
4
Dispersion EPR: Considerations for Low-Frequency Experiments.
Appl Magn Reson. 2022 Jan;53(1):193-206. doi: 10.1007/s00723-021-01352-z. Epub 2021 May 29.
5
Photonic band-gap resonators for high-field/high-frequency EPR of microliter-volume liquid aqueous samples.
J Magn Reson. 2018 Nov;296:152-164. doi: 10.1016/j.jmr.2018.09.006. Epub 2018 Sep 20.
6
Autobiography of James S. Hyde.
Appl Magn Reson. 2017 Dec;48(11-12):1103-1147. doi: 10.1007/s00723-017-0950-5. Epub 2017 Oct 27.
7
Uniform Field Resonators for EPR Spectroscopy: A Review.
Cell Biochem Biophys. 2019 Mar;77(1):3-14. doi: 10.1007/s12013-018-0845-6. Epub 2018 Jun 25.
8
Rapid-scan EPR imaging.
J Magn Reson. 2017 Jul;280:140-148. doi: 10.1016/j.jmr.2017.02.013.
9
Broadband W-band Rapid Frequency Sweep Considerations for Fourier Transform EPR.
Cell Biochem Biophys. 2017 Dec;75(3-4):259-273. doi: 10.1007/s12013-017-0804-7. Epub 2017 May 29.

本文引用的文献

1
Saturation recovery EPR and ELDOR at W-band for spin labels.
J Magn Reson. 2008 Aug;193(2):297-304. doi: 10.1016/j.jmr.2008.05.008. Epub 2008 May 20.
2
3
Microwave frequency modulation in CW EPR at W-band using a loop-gap resonator.
J Magn Reson. 2007 Apr;185(2):259-63. doi: 10.1016/j.jmr.2007.01.002. Epub 2007 Jan 10.
4
Direct-detected rapid-scan EPR at 250 MHz.
J Magn Reson. 2004 Sep;170(1):127-35. doi: 10.1016/j.jmr.2004.06.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验