Suppr超能文献

采用非绝热快速扫场(NARS)技术探测无失真连续波(CW)电子顺磁共振(EPR)谱。

Detection of undistorted continuous wave (CW) electron paramagnetic resonance (EPR) spectra with non-adiabatic rapid sweep (NARS) of the magnetic field.

机构信息

National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.

出版信息

J Magn Reson. 2011 Aug;211(2):228-33. doi: 10.1016/j.jmr.2011.06.004. Epub 2011 Jun 13.

Abstract

A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented.

摘要

连续波 (CW) 电子顺磁共振 (EPR) 谱通常显示为应用 100 kHz 磁场调制的一阶谐波响应,这用于通过降低 1/f 噪声水平来提高灵敏度。然而,任何幅度的磁场调制都会导致光谱展宽,并使 EPR 光谱强度至少降低两倍。在本文中,开发了一种避免这些折衷并提供避免 1/f 噪声的方法的 CW 快速扫描光谱技术。该技术称为非绝热快速扫描 (NARS) EPR,它包括以小线圈以足够高的重复率线性地重复扫过光谱片段中的极化磁场,以使接收器噪声、微波相位噪声和环境微震,每种噪声都具有 1/f 特性,得以克服。然而,扫描速度足够慢,以至于避免了绝热响应,并且自旋系统始终接近热平衡。从光谱片段中重复获取的光谱进行平均。在这些条件下,获得了没有展宽或信号强度损失的无失真纯吸收光谱。应用数字滤波器(例如移动平均滤波器)来去除高频噪声,该噪声的带宽与在传统的锁定检测场调制中使用积分时间常数相当。给出了 L 波段和 X 波段的氮氧自由基光谱。

相似文献

3
Moving difference (MDIFF) non-adiabatic rapid sweep (NARS) EPR of copper(II).
J Magn Reson. 2013 Nov;236:15-25. doi: 10.1016/j.jmr.2013.08.004. Epub 2013 Aug 20.
4
W-band frequency-swept EPR.
J Magn Reson. 2010 Jul;205(1):93-101. doi: 10.1016/j.jmr.2010.04.005. Epub 2010 Apr 13.
5
Rapid-scan EPR of immobilized nitroxides.
J Magn Reson. 2014 Oct;247:67-71. doi: 10.1016/j.jmr.2014.08.008. Epub 2014 Aug 30.
6
Reconstruction of the first-derivative EPR spectrum from multiple harmonics of the field-modulated continuous wave signal.
J Magn Reson. 2011 Apr;209(2):277-81. doi: 10.1016/j.jmr.2011.01.027. Epub 2011 Feb 3.
8
Full cycle rapid scan EPR deconvolution algorithm.
J Magn Reson. 2017 Aug;281:272-278. doi: 10.1016/j.jmr.2017.06.008. Epub 2017 Jun 11.

引用本文的文献

2
Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor.
Magn Reson (Gott). 2021 Aug 25;2(2):673-687. doi: 10.5194/mr-2-673-2021. eCollection 2021.
3
Non-Steady State NMR Effect and Application on Time-Varying Magnetic Field Measurement.
Sensors (Basel). 2022 Dec 17;22(24):9960. doi: 10.3390/s22249960.
4
Dispersion EPR: Considerations for Low-Frequency Experiments.
Appl Magn Reson. 2022 Jan;53(1):193-206. doi: 10.1007/s00723-021-01352-z. Epub 2021 May 29.
5
High fidelity triangular sweep of the magnetic field for millisecond scan EPR imaging.
J Magn Reson. 2021 Aug;329:107024. doi: 10.1016/j.jmr.2021.107024. Epub 2021 Jun 9.
6
EPR Everywhere.
Appl Magn Reson. 2021;52(8):1113-1139. doi: 10.1007/s00723-020-01304-z. Epub 2021 Jan 24.
7
Rapid-Scan Electron Paramagnetic Resonance of Highly Resolved Hyperfine Lines in Organic Radicals.
Chemphyschem. 2020 Nov 17;21(22):2564-2570. doi: 10.1002/cphc.202000701. Epub 2020 Oct 20.
8
General solution for rapid scan EPR deconvolution problem.
J Magn Reson. 2020 Sep;318:106801. doi: 10.1016/j.jmr.2020.106801. Epub 2020 Aug 1.
9
Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix.
Sci Adv. 2019 Oct 4;5(10):eaay1394. doi: 10.1126/sciadv.aay1394. eCollection 2019 Oct.
10
Modular imaging system: Rapid scan EPR at 800 MHz.
J Magn Reson. 2019 Aug;305:94-103. doi: 10.1016/j.jmr.2019.06.003. Epub 2019 Jun 8.

本文引用的文献

1
W-band frequency-swept EPR.
J Magn Reson. 2010 Jul;205(1):93-101. doi: 10.1016/j.jmr.2010.04.005. Epub 2010 Apr 13.
2
A Linear Magnetic Field Scan Driver.
Concepts Magn Reson Part B Magn Reson Eng. 2009 Feb 1;35B(1):44-58. doi: 10.1002/cmr.b.20128.
3
Sensitivity enhancement in ESR/ENDOR spectrometers by use of microwave amplifiers.
Rev Sci Instrum. 1978 Aug;49(8):1100. doi: 10.1063/1.1135527.
4
EasySpin, a comprehensive software package for spectral simulation and analysis in EPR.
J Magn Reson. 2006 Jan;178(1):42-55. doi: 10.1016/j.jmr.2005.08.013. Epub 2005 Sep 26.
5
Absorption line CW EPR using an amplitude modulated longitudinal field.
J Magn Reson. 2004 Nov;171(1):80-9. doi: 10.1016/j.jmr.2004.07.021.
6
Direct-detected rapid-scan EPR at 250 MHz.
J Magn Reson. 2004 Sep;170(1):127-35. doi: 10.1016/j.jmr.2004.06.008.
7
Linewidth analysis of spin labels in liquids. I. Theory and data analysis.
J Magn Reson. 1999 Jun;138(2):199-209. doi: 10.1006/jmre.1999.1737.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验