Suppr超能文献

固定化氮氧自由基的快速扫描电子顺磁共振

Rapid-scan EPR of immobilized nitroxides.

作者信息

Yu Zhelin, Quine Richard W, Rinard George A, Tseitlin Mark, Elajaili Hanan, Kathirvelu Velavan, Clouston Laura J, Boratyński Przemysław J, Rajca Andrzej, Stein Richard, Mchaourab Hassane, Eaton Sandra S, Eaton Gareth R

机构信息

Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA.

School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA.

出版信息

J Magn Reson. 2014 Oct;247:67-71. doi: 10.1016/j.jmr.2014.08.008. Epub 2014 Aug 30.

Abstract

X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for (14)N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for (15)N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10″ magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes.

摘要

在293 K下通过快速扫描获得固定化氮氧化物的X波段电子顺磁共振光谱。对于全氘代(14)N-四甲基哌啶酮以及用碘乙酰胺螺环己基氮氧化物进行双重自旋标记的T4溶菌酶,扫描宽度为155 G,扫描频率为13.4 kHz;对于全氘代(15)N-四甲基哌啶酮,扫描宽度为100 G,扫描频率为20.9 kHz。通过对我们的快速扫描驱动器进行改进、使用利兹线制成的扫描线圈以及在布鲁克10英寸磁体的磁极上放置高导电性铝板以减少磁极表面的电阻损耗,才得以进行这些宽扫描。在相同的数据采集时间内,快速扫描吸收光谱的信噪比比对未使线形展宽的调制幅度记录的连续波一阶导数光谱高约一个数量级。

相似文献

1
Rapid-scan EPR of immobilized nitroxides.
J Magn Reson. 2014 Oct;247:67-71. doi: 10.1016/j.jmr.2014.08.008. Epub 2014 Aug 30.
2
Multiharmonic electron paramagnetic resonance for extended samples with both narrow and broad lines.
J Magn Reson. 2015 May;254:86-92. doi: 10.1016/j.jmr.2015.03.006. Epub 2015 Mar 23.
3
Relaxation times and line widths of isotopically-substituted nitroxides in aqueous solution at X-band.
J Magn Reson. 2011 Oct;212(2):370-7. doi: 10.1016/j.jmr.2011.07.018. Epub 2011 Jul 29.
6
Background correction in rapid scan EPR spectroscopy.
J Magn Reson. 2018 Aug;293:1-8. doi: 10.1016/j.jmr.2018.05.010. Epub 2018 May 17.
8
Rapid-Scan EPR of Nitroxide Spin Labels and Semiquinones.
Methods Enzymol. 2015;563:3-21. doi: 10.1016/bs.mie.2015.06.027. Epub 2015 Aug 1.
9
W-band frequency-swept EPR.
J Magn Reson. 2010 Jul;205(1):93-101. doi: 10.1016/j.jmr.2010.04.005. Epub 2010 Apr 13.
10
Room-temperature distance measurements of immobilized spin-labeled protein by DEER/PELDOR.
Biophys J. 2015 Mar 10;108(5):1213-9. doi: 10.1016/j.bpj.2015.01.015.

引用本文的文献

1
Advances in rapid scan EPR spectroscopy.
Methods Enzymol. 2022;666:1-24. doi: 10.1016/bs.mie.2022.02.013. Epub 2022 Mar 14.
2
Rapid Scan EPR imaging as a Tool for Magnetic Field Mapping.
Appl Magn Reson. 2020 Oct;51(9-10):1117-1124. doi: 10.1007/s00723-020-01238-6. Epub 2020 Sep 25.
4
EPR Everywhere.
Appl Magn Reson. 2021;52(8):1113-1139. doi: 10.1007/s00723-020-01304-z. Epub 2021 Jan 24.
5
Full cycle rapid scan EPR deconvolution algorithm.
J Magn Reson. 2017 Aug;281:272-278. doi: 10.1016/j.jmr.2017.06.008. Epub 2017 Jun 11.
6
Rapid-scan EPR imaging.
J Magn Reson. 2017 Jul;280:140-148. doi: 10.1016/j.jmr.2017.02.013.
7
Using rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude.
J Magn Reson. 2017 Aug;281:17-25. doi: 10.1016/j.jmr.2017.04.003. Epub 2017 Apr 17.
8
Synthesis and Electron Spin Relaxation of Tetracarboxylate Pyrroline Nitroxides.
J Org Chem. 2017 Feb 3;82(3):1538-1544. doi: 10.1021/acs.joc.6b02737. Epub 2017 Jan 13.
9
Comparison of Continuous Wave and Rapid Scan X-band Electron Paramagnetic Resonance of Irradiated Clipped Fingernails.
Radiat Prot Dosimetry. 2016 Dec;172(1-3):133-138. doi: 10.1093/rpd/ncw162. Epub 2016 Sep 2.
10

本文引用的文献

1
Uncertainty analysis for absorption and first-derivative EPR spectra.
Concepts Magn Reson Part A Bridg Educ Res. 2012 Nov;40A(6):295-305. doi: 10.1002/cmr.a.21248.
2
Electron spin-lattice relaxation mechanisms of rapidly-tumbling nitroxide radicals.
J Magn Reson. 2013 Nov;236:47-56. doi: 10.1016/j.jmr.2013.08.006. Epub 2013 Aug 22.
3
Moving difference (MDIFF) non-adiabatic rapid sweep (NARS) EPR of copper(II).
J Magn Reson. 2013 Nov;236:15-25. doi: 10.1016/j.jmr.2013.08.004. Epub 2013 Aug 20.
4
Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.
Biophys J. 2013 Jul 16;105(2):338-42. doi: 10.1016/j.bpj.2013.06.005.
5
Corrections for sinusoidal background and non-orthogonality of signal channels in sinusoidal rapid magnetic field scans.
J Magn Reson. 2012 Oct;223:80-4. doi: 10.1016/j.jmr.2012.07.023. Epub 2012 Aug 8.
6
X-band rapid-scan EPR of nitroxyl radicals.
J Magn Reson. 2012 Jan;214(1):221-6. doi: 10.1016/j.jmr.2011.11.007. Epub 2011 Nov 20.
7
Comparison of Continuous Wave, Spin Echo, and Rapid Scan EPR of Irradiated Fused Quartz.
Radiat Meas. 2011 Sep;46(9):993-996. doi: 10.1016/j.radmeas.2011.03.035.
8
Deconvolution of sinusoidal rapid EPR scans.
J Magn Reson. 2011 Feb;208(2):279-83. doi: 10.1016/j.jmr.2010.11.015. Epub 2010 Nov 26.
9
A spirocyclohexyl nitroxide amino acid spin label for pulsed EPR spectroscopy distance measurements.
Chemistry. 2010 May 17;16(19):5778-82. doi: 10.1002/chem.200903102.
10
Combining absorption and dispersion signals to improve signal-to-noise for rapid-scan EPR imaging.
J Magn Reson. 2010 Apr;203(2):305-10. doi: 10.1016/j.jmr.2010.01.013. Epub 2010 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验