Suppr超能文献

铜(II)的平移差(MDIFF)非绝热快速扫描(NARS)电子顺磁共振。

Moving difference (MDIFF) non-adiabatic rapid sweep (NARS) EPR of copper(II).

机构信息

National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.

出版信息

J Magn Reson. 2013 Nov;236:15-25. doi: 10.1016/j.jmr.2013.08.004. Epub 2013 Aug 20.

Abstract

Non-adiabatic rapid sweep (NARS) EPR spectroscopy has been introduced for application to nitroxide-labeled biological samples (Kittell et al., 2011). Displays are pure absorption, and are built up by acquiring data in spectral segments that are concatenated. In this paper we extend the method to frozen solutions of copper-imidazole, a square planar copper complex with four in-plane nitrogen ligands. Pure absorption spectra are created from concatenation of 170 5-gauss segments spanning 850 G at 1.9 GHz. These spectra, however, are not directly useful since nitrogen superhyperfine couplings are barely visible. Application of the moving difference (MDIFF) algorithm to the digitized NARS pure absorption spectrum is used to produce spectra that are analogous to the first harmonic EPR. The signal intensity is about four times higher than when using conventional 100 kHz field modulation, depending on line shape. MDIFF not only filters the spectrum, but also the noise, resulting in further improvement of the SNR for the same signal acquisition time. The MDIFF amplitude can be optimized retrospectively, different spectral regions can be examined at different amplitudes, and an amplitude can be used that is substantially greater than the upper limit of the field modulation amplitude of a conventional EPR spectrometer, which improves the signal-to-noise ratio of broad lines.

摘要

非绝热快速扫描(NARS)电子顺磁共振波谱已被引入应用于氮氧自由基标记的生物样品(Kittell 等人,2011)。显示为纯吸收,通过在串联的光谱段中获取数据来构建。在本文中,我们将该方法扩展到铜-咪唑的冷冻溶液中,铜-咪唑是一种具有四个平面氮配体的平面正方形铜配合物。纯吸收光谱是通过拼接跨越 1.9GHz 时 850G 的 170 个 5 高斯段来创建的。然而,由于氮超精细耦合几乎不可见,这些光谱并不直接有用。将移动差分(MDIFF)算法应用于数字化 NARS 纯吸收光谱,可生成类似于第一谐波 EPR 的光谱。信号强度比使用传统的 100kHz 场调制高约四倍,具体取决于线型。MDIFF 不仅可以对光谱进行滤波,还可以对噪声进行滤波,从而在相同的信号采集时间内进一步提高 SNR。可以回顾性地优化 MDIFF 幅度,可以在不同幅度下检查不同的光谱区域,并且可以使用大大超过传统 EPR 光谱仪场调制幅度上限的幅度,从而提高宽带线的信噪比。

相似文献

5
W-band frequency-swept EPR.W 波段频率扫描电子顺磁共振。
J Magn Reson. 2010 Jul;205(1):93-101. doi: 10.1016/j.jmr.2010.04.005. Epub 2010 Apr 13.
6
EPR Methods for Biological Cu(II): L-Band CW and NARS.生物铜(II)的电子顺磁共振方法:L波段连续波和NARS
Methods Enzymol. 2015;563:341-61. doi: 10.1016/bs.mie.2015.06.030. Epub 2015 Jul 23.
10
Rapid-scan EPR of immobilized nitroxides.固定化氮氧自由基的快速扫描电子顺磁共振
J Magn Reson. 2014 Oct;247:67-71. doi: 10.1016/j.jmr.2014.08.008. Epub 2014 Aug 30.

引用本文的文献

1
Hyperfine Decoupling of ESR Spectra Using Wavelet Transform.利用小波变换对电子自旋共振谱进行超精细解耦
Magnetochemistry. 2022 Mar;8(3). doi: 10.3390/magnetochemistry8030032. Epub 2022 Mar 8.
2
EPR Everywhere.无处不在的电子顺磁共振。
Appl Magn Reson. 2021;52(8):1113-1139. doi: 10.1007/s00723-020-01304-z. Epub 2021 Jan 24.
4
General solution for rapid scan EPR deconvolution problem.快速扫描 EPR 去卷积问题的通用解。
J Magn Reson. 2020 Sep;318:106801. doi: 10.1016/j.jmr.2020.106801. Epub 2020 Aug 1.
7
Autobiography of James S. Hyde.詹姆斯·S·海德自传。
Appl Magn Reson. 2017 Dec;48(11-12):1103-1147. doi: 10.1007/s00723-017-0950-5. Epub 2017 Oct 27.
8
Rapid-scan EPR imaging.快速扫描电子顺磁共振成像
J Magn Reson. 2017 Jul;280:140-148. doi: 10.1016/j.jmr.2017.02.013.
9
EPR Methods for Biological Cu(II): L-Band CW and NARS.生物铜(II)的电子顺磁共振方法:L波段连续波和NARS
Methods Enzymol. 2015;563:341-61. doi: 10.1016/bs.mie.2015.06.030. Epub 2015 Jul 23.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验