Suppr超能文献

果蝇升力控制的频率响应。

Frequency response of lift control in Drosophila.

机构信息

Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.

出版信息

J R Soc Interface. 2010 Nov 6;7(52):1603-16. doi: 10.1098/rsif.2010.0040. Epub 2010 May 12.

Abstract

The flight control responses of the fruitfly represent a powerful model system to explore neuromotor control mechanisms, whose system level control properties can be suitably characterized with a frequency response analysis. We characterized the lift response dynamics of tethered flying Drosophila in presence of vertically oscillating visual patterns, whose oscillation frequency we varied between 0.1 and 13 Hz. We justified these measurements by showing that the amplitude gain and phase response is invariant to the pattern oscillation amplitude and spatial frequency within a broad dynamic range. We also showed that lift responses are largely linear and time invariant (LTI), a necessary condition for a meaningful analysis of frequency responses and a remarkable characteristic given its nonlinear constituents. The flies responded to increasing oscillation frequencies with a roughly linear decrease in response gain, which dropped to background noise levels at about 6 Hz. The phase lag decreased linearly, consistent with a constant reaction delay of 75 ms. Next, we estimated the free-flight response of the fly to generate a Bode diagram of the lift response. The limitation of lift control to frequencies below 6 Hz is explained with inertial body damping, which becomes dominant at higher frequencies. Our work provides the detailed background and techniques that allow optomotor lift responses of Drosophila to be measured with comparatively simple, affordable and commercially available techniques. The identification of an LTI, pattern velocity dependent, lift control strategy is relevant to the underlying motion computation mechanisms and serves a broader understanding of insects' flight control strategies. The relevance and potential pitfalls of applying system identification techniques in tethered preparations is discussed.

摘要

果蝇的飞行控制反应是探索神经运动控制机制的强大模型系统,其系统级控制特性可以通过频率响应分析来适当描述。我们对悬停飞行的果蝇在垂直振动视觉模式下的升力响应动力学进行了特征描述,我们在 0.1Hz 到 13Hz 之间改变了模式的振荡频率。我们通过证明振幅增益和相位响应对模式的振幅和空间频率在很宽的动态范围内是不变的,证明了这些测量的合理性。我们还表明,升力响应在很大程度上是线性和时不变的(LTI),这是对频率响应进行有意义分析的必要条件,并且考虑到其非线性成分,这是一个显著的特征。果蝇对增加的振荡频率的响应是响应增益的大致线性下降,当频率约为 6Hz 时,响应增益下降到背景噪声水平。相位滞后线性下降,与 75ms 的恒定反应延迟一致。接下来,我们估计了果蝇的自由飞行反应,以生成升力响应的波特图。升力控制限于 6Hz 以下的频率的限制可以用惯性体阻尼来解释,惯性体阻尼在更高的频率下变得占主导地位。我们的工作提供了详细的背景和技术,使得可以使用相对简单、经济实惠且商业上可用的技术来测量果蝇的光觉升力反应。确定 LTI、模式速度相关的升力控制策略与潜在的运动计算机制有关,并有助于更全面地了解昆虫的飞行控制策略。还讨论了在系留制剂中应用系统识别技术的相关性和潜在陷阱。

相似文献

1
Frequency response of lift control in Drosophila.
J R Soc Interface. 2010 Nov 6;7(52):1603-16. doi: 10.1098/rsif.2010.0040. Epub 2010 May 12.
2
Visual control of flight speed in Drosophila melanogaster.
J Exp Biol. 2009 Apr;212(Pt 8):1120-30. doi: 10.1242/jeb.020768.
4
The free-flight response of Drosophila to motion of the visual environment.
J Exp Biol. 2008 Jul;211(Pt 13):2026-45. doi: 10.1242/jeb.008268.
5
Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1182-91. doi: 10.1073/pnas.1323529111. Epub 2014 Mar 17.
7
Visual stimulation of saccades in magnetically tethered Drosophila.
J Exp Biol. 2006 Aug;209(Pt 16):3170-82. doi: 10.1242/jeb.02369.
8
Drosophila flying in augmented reality reveals the vision-based control autonomy of the optomotor response.
Curr Biol. 2024 Jan 8;34(1):68-78.e4. doi: 10.1016/j.cub.2023.11.045. Epub 2023 Dec 18.
9
Proprioception gates visual object fixation in flying flies.
Curr Biol. 2023 Apr 24;33(8):1459-1471.e3. doi: 10.1016/j.cub.2023.03.018. Epub 2023 Mar 30.
10
Haltere mechanosensory influence on tethered flight behavior in Drosophila.
J Exp Biol. 2015 Aug;218(Pt 16):2528-37. doi: 10.1242/jeb.121863. Epub 2015 Jun 25.

引用本文的文献

1
MEMS-Based Micro Sensors for Measuring the Tiny Forces Acting on Insects.
Sensors (Basel). 2022 Oct 20;22(20):8018. doi: 10.3390/s22208018.
2
Maggot Instructor: Semi-Automated Analysis of Learning and Memory in Larvae.
Front Psychol. 2018 Jun 20;9:1010. doi: 10.3389/fpsyg.2018.01010. eCollection 2018.
3
Controlling roll perturbations in fruit flies.
J R Soc Interface. 2015 Apr 6;12(105). doi: 10.1098/rsif.2015.0075.
4
Vision-based flight control in the hawkmoth Hyles lineata.
J R Soc Interface. 2013 Dec 11;11(91):20130921. doi: 10.1098/rsif.2013.0921. Print 2014 Feb 6.
5
Embodied linearity of speed control in Drosophila melanogaster.
J R Soc Interface. 2012 Dec 7;9(77):3260-7. doi: 10.1098/rsif.2012.0527. Epub 2012 Aug 29.
6
Behavioural system identification of visual flight speed control in Drosophila melanogaster.
J R Soc Interface. 2011 Feb 6;8(55):171-85. doi: 10.1098/rsif.2010.0225. Epub 2010 Jun 4.

本文引用的文献

1
Behavioural system identification of visual flight speed control in Drosophila melanogaster.
J R Soc Interface. 2011 Feb 6;8(55):171-85. doi: 10.1098/rsif.2010.0225. Epub 2010 Jun 4.
2
Dynamics of optomotor responses in Drosophila to perturbations in optic flow.
J Exp Biol. 2010 Apr;213(Pt 8):1366-75. doi: 10.1242/jeb.037945.
3
Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila.
J Exp Biol. 2010 Feb 15;213(4):602-12. doi: 10.1242/jeb.038778.
4
Wingbeat time and the scaling of passive rotational damping in flapping flight.
Science. 2009 Apr 10;324(5924):252-5. doi: 10.1126/science.1168431.
5
Visual control of flight speed in Drosophila melanogaster.
J Exp Biol. 2009 Apr;212(Pt 8):1120-30. doi: 10.1242/jeb.020768.
6
Drosophila's view on insect vision.
Curr Biol. 2009 Jan 13;19(1):R36-47. doi: 10.1016/j.cub.2008.11.001.
7
Motion processing streams in Drosophila are behaviorally specialized.
Neuron. 2008 Jul 31;59(2):322-35. doi: 10.1016/j.neuron.2008.05.022.
8
The free-flight response of Drosophila to motion of the visual environment.
J Exp Biol. 2008 Jul;211(Pt 13):2026-45. doi: 10.1242/jeb.008268.
9
Fly vision: neural mechanisms of motion computation.
Curr Biol. 2008 Apr 22;18(8):R339-41. doi: 10.1016/j.cub.2008.02.046.
10
TrackFly: virtual reality for a behavioral system analysis in free-flying fruit flies.
J Neurosci Methods. 2008 Jun 15;171(1):110-7. doi: 10.1016/j.jneumeth.2008.02.016. Epub 2008 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验