Suppr超能文献

等离子体胶体粒子的表面增强拉曼散射生物医学应用。

Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles.

机构信息

Departamento de Química Física and Unidad Asociada CSIC, Universidade de Vigo, 36310 Vigo, Spain.

出版信息

J R Soc Interface. 2010 Aug 6;7 Suppl 4(Suppl 4):S435-50. doi: 10.1098/rsif.2010.0125.focus. Epub 2010 May 12.

Abstract

This review article presents a general view of the recent progress in the fast developing area of surface-enhanced Raman scattering spectroscopy as an analytical tool for the detection and identification of molecular species in very small concentrations, with a particular focus on potential applications in the biomedical area. We start with a brief overview of the relevant concepts related to the choice of plasmonic nanostructures for the design of suitable substrates, their implementation into more complex materials that allow generalization of the method and detection of a wide variety of (bio)molecules and the strategies that can be used for both direct and indirect sensing. In relation to indirect sensing, we devote the final section to a description of SERS-encoded particles, which have found wide application in biomedicine (among other fields), since they are expected to face challenges such as multiplexing and high-throughput screening.

摘要

这篇综述文章概述了表面增强拉曼散射光谱这一快速发展领域的最新进展,该技术作为一种分析工具,可用于检测和识别极低浓度的分子种类,尤其侧重于该技术在生物医学领域的潜在应用。我们首先简要概述了与等离子体纳米结构选择相关的一些概念,这些结构可用于设计合适的基底,然后将其应用于更复杂的材料中,以推广该方法并检测各种(生物)分子,以及可用于直接和间接传感的策略。关于间接传感,我们在最后一节中专门介绍了 SERS 编码粒子,由于其有望应对多重检测和高通量筛选等挑战,因此已在生物医学(以及其他领域)中得到广泛应用。

相似文献

1
Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles.
J R Soc Interface. 2010 Aug 6;7 Suppl 4(Suppl 4):S435-50. doi: 10.1098/rsif.2010.0125.focus. Epub 2010 May 12.
3
Recent advances in non-plasmonic surface-enhanced Raman spectroscopy nanostructures for biomedical applications.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jul;14(4):e1795. doi: 10.1002/wnan.1795. Epub 2022 Apr 1.
4
Engineered Two-Dimensional Nanostructures as SERS Substrates for Biomolecule Sensing: A Review.
Biosensors (Basel). 2023 Jan 6;13(1):102. doi: 10.3390/bios13010102.
5
Surface-enhanced Raman scattering on colloidal nanostructures.
Adv Colloid Interface Sci. 2005 Nov 30;116(1-3):45-61. doi: 10.1016/j.cis.2005.04.007. Epub 2005 Oct 6.
6
Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures.
Chembiochem. 2019 Oct 1;20(19):2432-2441. doi: 10.1002/cbic.201900191. Epub 2019 Jul 2.
7
Biocompatible surface-enhanced Raman scattering nanotags for in vivo cancer detection.
Nanomedicine (Lond). 2014 Mar;9(3):523-35. doi: 10.2217/nnm.13.222.
9
Dual-Enhanced Raman Scattering-Based Characterization of Stem Cell Differentiation Using Graphene-Plasmonic Hybrid Nanoarray.
Nano Lett. 2019 Nov 13;19(11):8138-8148. doi: 10.1021/acs.nanolett.9b03402. Epub 2019 Nov 1.
10
Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review.
J Nanobiotechnology. 2022 Dec 22;20(1):537. doi: 10.1186/s12951-022-01711-3.

引用本文的文献

1
Sensing the Future-Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances.
ACS Omega. 2024 Dec 6;9(50):48918-48987. doi: 10.1021/acsomega.4c07991. eCollection 2024 Dec 17.
2
Surface-Enhanced Raman Spectroscopy (SERS)-Based Sensors for Deoxyribonucleic Acid (DNA) Detection.
Molecules. 2024 Jul 16;29(14):3338. doi: 10.3390/molecules29143338.
3
SERS Immunosensors for Cancer Markers Detection.
Materials (Basel). 2023 May 15;16(10):3733. doi: 10.3390/ma16103733.
4
Fiber Optic Sensing Technology and Vision Sensing Technology for Structural Health Monitoring.
Sensors (Basel). 2023 Apr 27;23(9):4334. doi: 10.3390/s23094334.
5
Current and Emerging Techniques for Diagnosis and MRD Detection in AML: A Comprehensive Narrative Review.
Cancers (Basel). 2023 Feb 21;15(5):1362. doi: 10.3390/cancers15051362.
6
Miniaturized Raman Instruments for SERS-Based Point-of-Care Testing on Respiratory Viruses.
Biosensors (Basel). 2022 Aug 2;12(8):590. doi: 10.3390/bios12080590.
7
A two-phase and long-lasting multi-antibacterial coating enables titanium biomaterials to prevent implants-related infections.
Mater Today Bio. 2022 Jun 16;15:100330. doi: 10.1016/j.mtbio.2022.100330. eCollection 2022 Jun.
8
Fundamentals of Biosensors and Detection Methods.
Adv Exp Med Biol. 2022;1379:3-29. doi: 10.1007/978-3-031-04039-9_1.
10
The structural transition of bimetallic Ag-Au from core/shell to alloy and SERS application.
RSC Adv. 2020 Jun 29;10(41):24577-24594. doi: 10.1039/d0ra04132g. eCollection 2020 Jun 24.

本文引用的文献

1
Growth of Sharp Tips on Gold Nanowires Leads to Increased Surface-Enhanced Raman Scattering Activity.
J Phys Chem Lett. 2010 Jan 7;1(1):24-7. doi: 10.1021/jz900004h. Epub 2009 Nov 5.
2
Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: The case of cocaine.
Nanoscale. 2009 Oct;1(1):153-8. doi: 10.1039/b9nr00059c. Epub 2009 Aug 13.
3
Surface-enhanced Raman spectroscopy.
Annu Rev Anal Chem (Palo Alto Calif). 2008;1:601-26. doi: 10.1146/annurev.anchem.1.031207.112814.
4
Multiplexed spectroscopic detections.
Annu Rev Anal Chem (Palo Alto Calif). 2008;1:515-47. doi: 10.1146/annurev.anchem.1.031207.112826.
5
Recent progress on silica coating of nanoparticles and related nanomaterials.
Adv Mater. 2010 Mar 19;22(11):1182-95. doi: 10.1002/adma.200901263.
6
Understanding the SERS Effects of Single Silver Nanoparticles and Their Dimers, One at a Time.
J Phys Chem Lett. 2010 Feb 18;1(4):696-703. doi: 10.1021/jz900286a.
7
Free-standing carbon nanotube films as optical accumulators for multiplex SERRS attomolar detection.
ACS Appl Mater Interfaces. 2010 Jan;2(1):19-22. doi: 10.1021/am9008715.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验