Suppr超能文献

结合态 cinaciguat(BAY 58-2667)与 Nostoc H-NOX 结构域的结构揭示了血红素模拟物对可溶性鸟苷酸环化酶的激活作用。

Structure of cinaciguat (BAY 58-2667) bound to Nostoc H-NOX domain reveals insights into heme-mimetic activation of the soluble guanylyl cyclase.

机构信息

Department of Biochemistry/RT500, Case Western Reserve University, Cleveland, Ohio 44120, USA.

出版信息

J Biol Chem. 2010 Jul 16;285(29):22651-7. doi: 10.1074/jbc.M110.111559. Epub 2010 May 12.

Abstract

Heme is a vital molecule for all life forms with heme being capable of assisting in catalysis, binding ligands, and undergoing redox changes. Heme-related dysfunction can lead to cardiovascular diseases with the oxidation of the heme of soluble guanylyl cyclase (sGC) critically implicated in some of these cardiovascular diseases. sGC, the main nitric oxide (NO) receptor, stimulates second messenger cGMP production, whereas reactive oxygen species are known to scavenge NO and oxidize/inactivate the heme leading to sGC degradation. This vulnerability of NO-heme signaling to oxidative stress led to the discovery of an NO-independent activator of sGC, cinaciguat (BAY 58-2667), which is a candidate drug in clinical trials to treat acute decompensated heart failure. Here, we present crystallographic and mutagenesis data that reveal the mode of action of BAY 58-2667. The 2.3-A resolution structure of BAY 58-2667 bound to a heme NO and oxygen binding domain (H-NOX) from Nostoc homologous to that of sGC reveals that the trifurcated BAY 58-2667 molecule has displaced the heme and acts as a heme mimetic. Carboxylate groups of BAY 58-2667 make interactions similar to the heme-propionate groups, whereas its hydrophobic phenyl ring linker folds up within the heme cavity in a planar-like fashion. BAY 58-2667 binding causes a rotation of the alphaF helix away from the heme pocket, as this helix is normally held in place via the inhibitory His(105)-heme covalent bond. The structure provides insights into how BAY 58-2667 binds and activates sGC to rescue heme-NO dysfunction in cardiovascular diseases.

摘要

血红素是所有生命形式的重要分子,能够协助催化、结合配体,并发生氧化还原变化。血红素相关功能障碍可导致心血管疾病,可溶性鸟苷酸环化酶(sGC)的血红素氧化在其中一些心血管疾病中起关键作用。sGC 是主要的一氧化氮(NO)受体,刺激第二信使 cGMP 的产生,而活性氧已知可清除 NO 并氧化/失活血红素,导致 sGC 降解。NO-血红素信号对氧化应激的这种脆弱性导致了 sGC 的一种非 NO 激活剂 cinaciguat(BAY 58-2667)的发现,它是一种用于治疗急性失代偿性心力衰竭的临床试验候选药物。在这里,我们提出了晶体学和突变体数据,揭示了 BAY 58-2667 的作用模式。分辨率为 2.3-A 的 BAY 58-2667 与来自 Nostoc 的血红素-NO 和氧结合结构域(H-NOX)的复合物结构与 sGC 的结构相似,表明三分叉的 BAY 58-2667 分子已取代血红素并充当血红素类似物。BAY 58-2667 的羧酸基团与血红素-丙酸基团形成相似的相互作用,而其疏水性苯环连接子以平面样方式折叠在血红素腔中。BAY 58-2667 的结合导致 alphaF 螺旋从血红素口袋旋转,因为该螺旋通常通过抑制 His(105)-血红素共价键固定在原位。该结构提供了有关 BAY 58-2667 如何结合和激活 sGC 以挽救心血管疾病中血红素-NO 功能障碍的见解。

相似文献

3
Insights into soluble guanylyl cyclase activation derived from improved heme-mimetics.
J Med Chem. 2013 Nov 14;56(21):8948-8952. doi: 10.1021/jm400539d. Epub 2013 Oct 24.
4
Insight into the rescue of oxidized soluble guanylate cyclase by the activator cinaciguat.
Chembiochem. 2012 May 7;13(7):977-81. doi: 10.1002/cbic.201100809. Epub 2012 Mar 30.
5
Probing domain interactions in soluble guanylate cyclase.
Biochemistry. 2011 May 24;50(20):4281-90. doi: 10.1021/bi200341b. Epub 2011 May 3.
6
Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase.
Protein Sci. 2013 Oct;22(10):1439-44. doi: 10.1002/pro.2331. Epub 2013 Sep 7.
7
Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation.
Br J Pharmacol. 2009 Jul;157(5):781-95. doi: 10.1111/j.1476-5381.2009.00263.x. Epub 2009 May 18.
8
Aspartate 102 in the heme domain of soluble guanylyl cyclase has a key role in NO activation.
Biochemistry. 2011 May 24;50(20):4291-7. doi: 10.1021/bi2004087. Epub 2011 May 2.
9
NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism.
EMBO J. 2007 Jan 24;26(2):578-88. doi: 10.1038/sj.emboj.7601521. Epub 2007 Jan 11.
10
Nitric oxide-independent stimulation of soluble guanylate cyclase with BAY 41-2272 in cardiovascular disease.
Cardiovasc Drug Rev. 2007 Spring;25(1):30-45. doi: 10.1111/j.1527-3466.2007.00003.x.

引用本文的文献

1
Oxidative Activation of the Heme Nitric Oxide/Oxygen-Binding Protein (H-NOX) from .
Biochemistry. 2025 Aug 5;64(15):3345-3357. doi: 10.1021/acs.biochem.5c00262. Epub 2025 Jul 27.
5
Highly Diluted Antibodies to eNOS Restore Endothelium Function in Aortic Rings From Hypertensive Rats.
Dose Response. 2022 May 17;20(2):15593258221099281. doi: 10.1177/15593258221099281. eCollection 2022 Apr-Jun.
6
Replacement of heme by soluble guanylate cyclase (sGC) activators abolishes heme-nitric oxide/oxygen (H-NOX) domain structural plasticity.
Curr Res Struct Biol. 2021 Nov 18;3:324-336. doi: 10.1016/j.crstbi.2021.11.003. eCollection 2021.
7
Activation mechanism of human soluble guanylate cyclase by stimulators and activators.
Nat Commun. 2021 Sep 17;12(1):5492. doi: 10.1038/s41467-021-25617-0.
8
Nitric Oxide System and Bronchial Epithelium: More Than a Barrier.
Front Physiol. 2021 Jun 30;12:687381. doi: 10.3389/fphys.2021.687381. eCollection 2021.
9
Revisiting Nitric Oxide Signaling: Where Was It, and Where Is It Going?
Biochemistry. 2021 Nov 23;60(46):3491-3496. doi: 10.1021/acs.biochem.1c00276. Epub 2021 Jun 7.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation.
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19753-60. doi: 10.1073/pnas.0911645106. Epub 2009 Nov 16.
3
Nitric oxide-independent vasodilator rescues heme-oxidized soluble guanylate cyclase from proteasomal degradation.
Circ Res. 2009 Jul 2;105(1):33-41. doi: 10.1161/CIRCRESAHA.109.198234. Epub 2009 May 28.
4
Discovery of the nitric oxide signaling pathway and targets for drug development.
Front Biosci (Landmark Ed). 2009 Jan 1;14(1):1-18. doi: 10.2741/3228.
5
Modulation of cGMP in heart failure: a new therapeutic paradigm.
Handb Exp Pharmacol. 2009(191):485-506. doi: 10.1007/978-3-540-68964-5_21.
6
NO- and haem-independent soluble guanylate cyclase activators.
Handb Exp Pharmacol. 2009(191):309-39. doi: 10.1007/978-3-540-68964-5_14.
7
The role of transporters in cellular heme and porphyrin homeostasis.
Pharmacol Ther. 2007 Jun;114(3):345-58. doi: 10.1016/j.pharmthera.2007.02.001. Epub 2007 Feb 21.
8
NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism.
EMBO J. 2007 Jan 24;26(2):578-88. doi: 10.1038/sj.emboj.7601521. Epub 2007 Jan 11.
9
Heme is involved in microRNA processing.
Nat Struct Mol Biol. 2007 Jan;14(1):23-9. doi: 10.1038/nsmb1182. Epub 2006 Dec 10.
10
Shattuck Lecture. Nitric oxide and cyclic GMP in cell signaling and drug development.
N Engl J Med. 2006 Nov 9;355(19):2003-11. doi: 10.1056/NEJMsa063904.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验