Department of Biochemistry/RT500, Case Western Reserve University, Cleveland, Ohio 44120, USA.
J Biol Chem. 2010 Jul 16;285(29):22651-7. doi: 10.1074/jbc.M110.111559. Epub 2010 May 12.
Heme is a vital molecule for all life forms with heme being capable of assisting in catalysis, binding ligands, and undergoing redox changes. Heme-related dysfunction can lead to cardiovascular diseases with the oxidation of the heme of soluble guanylyl cyclase (sGC) critically implicated in some of these cardiovascular diseases. sGC, the main nitric oxide (NO) receptor, stimulates second messenger cGMP production, whereas reactive oxygen species are known to scavenge NO and oxidize/inactivate the heme leading to sGC degradation. This vulnerability of NO-heme signaling to oxidative stress led to the discovery of an NO-independent activator of sGC, cinaciguat (BAY 58-2667), which is a candidate drug in clinical trials to treat acute decompensated heart failure. Here, we present crystallographic and mutagenesis data that reveal the mode of action of BAY 58-2667. The 2.3-A resolution structure of BAY 58-2667 bound to a heme NO and oxygen binding domain (H-NOX) from Nostoc homologous to that of sGC reveals that the trifurcated BAY 58-2667 molecule has displaced the heme and acts as a heme mimetic. Carboxylate groups of BAY 58-2667 make interactions similar to the heme-propionate groups, whereas its hydrophobic phenyl ring linker folds up within the heme cavity in a planar-like fashion. BAY 58-2667 binding causes a rotation of the alphaF helix away from the heme pocket, as this helix is normally held in place via the inhibitory His(105)-heme covalent bond. The structure provides insights into how BAY 58-2667 binds and activates sGC to rescue heme-NO dysfunction in cardiovascular diseases.
血红素是所有生命形式的重要分子,能够协助催化、结合配体,并发生氧化还原变化。血红素相关功能障碍可导致心血管疾病,可溶性鸟苷酸环化酶(sGC)的血红素氧化在其中一些心血管疾病中起关键作用。sGC 是主要的一氧化氮(NO)受体,刺激第二信使 cGMP 的产生,而活性氧已知可清除 NO 并氧化/失活血红素,导致 sGC 降解。NO-血红素信号对氧化应激的这种脆弱性导致了 sGC 的一种非 NO 激活剂 cinaciguat(BAY 58-2667)的发现,它是一种用于治疗急性失代偿性心力衰竭的临床试验候选药物。在这里,我们提出了晶体学和突变体数据,揭示了 BAY 58-2667 的作用模式。分辨率为 2.3-A 的 BAY 58-2667 与来自 Nostoc 的血红素-NO 和氧结合结构域(H-NOX)的复合物结构与 sGC 的结构相似,表明三分叉的 BAY 58-2667 分子已取代血红素并充当血红素类似物。BAY 58-2667 的羧酸基团与血红素-丙酸基团形成相似的相互作用,而其疏水性苯环连接子以平面样方式折叠在血红素腔中。BAY 58-2667 的结合导致 alphaF 螺旋从血红素口袋旋转,因为该螺旋通常通过抑制 His(105)-血红素共价键固定在原位。该结构提供了有关 BAY 58-2667 如何结合和激活 sGC 以挽救心血管疾病中血红素-NO 功能障碍的见解。