Suppr超能文献

血红素域中可溶性鸟苷酸环化酶的 102 位天冬氨酸在 NO 的激活中起关键作用。

Aspartate 102 in the heme domain of soluble guanylyl cyclase has a key role in NO activation.

机构信息

Department of Pharmacology and Physiology, New Jersey Medical School/UMDNJ, Newark, NJ 07103, USA.

出版信息

Biochemistry. 2011 May 24;50(20):4291-7. doi: 10.1021/bi2004087. Epub 2011 May 2.

Abstract

Nitric oxide (NO) is involved in the physiology and pathophysiology of the cardiovascular and neuronal systems via activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. Recent structural studies have allowed a better understanding of the residues that dictate the affinity and binding of NO to the heme and the resulting breakage of the bond between the heme iron and histidine 105 (H105) of the β subunit of sGC. Still, it is unknown how the breakage of the iron-His bond translates into NO-dependent increased catalysis. Structural studies on homologous H-NOX domains in various states pointed to a role for movement of the H105 containing αF helix. Our modeling of the heme-binding domain highlighted conserved residues in the vicinity of H105 that could potentially regulate the extent to which the αF helix shifts and/or propagate the activation signal once the covalent bond with H105 has been broken. These include a direct interaction of αF helix residue aspartate 102 (D102) with the backbone nitrogen of F120. Mutational analysis of this region points to an essential role of the interactions in the vicinity of H105 for heme stability and identifies D102 as having a key role in NO activation following breakage of the iron-His bond.

摘要

一氧化氮(NO)通过激活含血红素的可溶性鸟苷酸环化酶(sGC),参与心血管和神经元系统的生理和病理生理学。最近的结构研究使人们更好地理解了决定 NO 与血红素亲和力和结合的残基,以及血红素铁与 sGCβ亚基组氨酸 105(H105)之间键的断裂。然而,血红素-组氨酸键的断裂如何转化为依赖 NO 的催化增加仍不清楚。在各种状态下对同源 H-NOX 结构域的结构研究表明,αF 螺旋中包含 H105 的运动起着作用。我们对血红素结合结构域的建模突出了 H105 附近保守的残基,这些残基可能调节αF 螺旋的移动程度,或者在与 H105 的共价键断裂后传播激活信号。这些包括αF 螺旋残基天冬氨酸 102(D102)与 F120 的骨架氮之间的直接相互作用。该区域的突变分析表明,H105 附近的相互作用对于血红素的稳定性至关重要,并确定 D102 在铁-组氨酸键断裂后 NO 激活中起关键作用。

相似文献

1
Aspartate 102 in the heme domain of soluble guanylyl cyclase has a key role in NO activation.
Biochemistry. 2011 May 24;50(20):4291-7. doi: 10.1021/bi2004087. Epub 2011 May 2.
3
Probing domain interactions in soluble guanylate cyclase.
Biochemistry. 2011 May 24;50(20):4281-90. doi: 10.1021/bi200341b. Epub 2011 May 3.
4
NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism.
EMBO J. 2007 Jan 24;26(2):578-88. doi: 10.1038/sj.emboj.7601521. Epub 2007 Jan 11.
6
Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase.
Protein Sci. 2013 Oct;22(10):1439-44. doi: 10.1002/pro.2331. Epub 2013 Sep 7.
7
Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation.
Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12312-7. doi: 10.1073/pnas.0703944104. Epub 2007 Jul 16.
10
Probing soluble guanylate cyclase activation by CO and YC-1 using resonance Raman spectroscopy.
Biochemistry. 2010 May 11;49(18):3815-23. doi: 10.1021/bi902214j.

引用本文的文献

2
Physiological activation and deactivation of soluble guanylate cyclase.
Nitric Oxide. 2018 Jul 1;77:65-74. doi: 10.1016/j.niox.2018.04.011. Epub 2018 Apr 25.
3
Bacterial Heme-Based Sensors of Nitric Oxide.
Antioxid Redox Signal. 2018 Dec 20;29(18):1872-1887. doi: 10.1089/ars.2017.7235. Epub 2017 Sep 28.
4
Bacterial Haemoprotein Sensors of NO: H-NOX and NosP.
Adv Microb Physiol. 2017;70:1-36. doi: 10.1016/bs.ampbs.2017.01.004. Epub 2017 Mar 18.
5
Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction.
PLoS One. 2015 Nov 30;10(11):e0143523. doi: 10.1371/journal.pone.0143523. eCollection 2015.
6
Structural insights into the role of iron-histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4156-64. doi: 10.1073/pnas.1416936111. Epub 2014 Sep 24.
7
YC-1 binding to the β subunit of soluble guanylyl cyclase overcomes allosteric inhibition by the α subunit.
Biochemistry. 2014 Jan 14;53(1):101-14. doi: 10.1021/bi4015133. Epub 2013 Dec 30.
8
Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6777-82. doi: 10.1073/pnas.1301934110. Epub 2013 Apr 9.
10
Dynamic ligand exchange in soluble guanylyl cyclase (sGC): implications for sGC regulation and desensitization.
J Biol Chem. 2011 Dec 16;286(50):43182-92. doi: 10.1074/jbc.M111.290304. Epub 2011 Oct 18.

本文引用的文献

2
Structural insights into the molecular mechanism of H-NOX activation.
Protein Sci. 2010 Apr;19(4):881-7. doi: 10.1002/pro.357.
3
A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21602-7. doi: 10.1073/pnas.0911083106. Epub 2009 Dec 9.
4
A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation.
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19753-60. doi: 10.1073/pnas.0911645106. Epub 2009 Nov 16.
5
Probing the function of heme distortion in the H-NOX family.
ACS Chem Biol. 2008 Nov 21;3(11):703-10. doi: 10.1021/cb800185h.
8
NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism.
EMBO J. 2007 Jan 24;26(2):578-88. doi: 10.1038/sj.emboj.7601521. Epub 2007 Jan 11.
9
The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling.
Bioinformatics. 2006 Jan 15;22(2):195-201. doi: 10.1093/bioinformatics/bti770. Epub 2005 Nov 13.
10
Residues stabilizing the heme moiety of the nitric oxide sensor soluble guanylate cyclase.
Eur J Pharmacol. 2005 Apr 18;513(1-2):67-74. doi: 10.1016/j.ejphar.2005.02.046. Epub 2005 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验