Department of Pharmacology and Physiology, New Jersey Medical School/UMDNJ, Newark, NJ 07103, USA.
Biochemistry. 2011 May 24;50(20):4291-7. doi: 10.1021/bi2004087. Epub 2011 May 2.
Nitric oxide (NO) is involved in the physiology and pathophysiology of the cardiovascular and neuronal systems via activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. Recent structural studies have allowed a better understanding of the residues that dictate the affinity and binding of NO to the heme and the resulting breakage of the bond between the heme iron and histidine 105 (H105) of the β subunit of sGC. Still, it is unknown how the breakage of the iron-His bond translates into NO-dependent increased catalysis. Structural studies on homologous H-NOX domains in various states pointed to a role for movement of the H105 containing αF helix. Our modeling of the heme-binding domain highlighted conserved residues in the vicinity of H105 that could potentially regulate the extent to which the αF helix shifts and/or propagate the activation signal once the covalent bond with H105 has been broken. These include a direct interaction of αF helix residue aspartate 102 (D102) with the backbone nitrogen of F120. Mutational analysis of this region points to an essential role of the interactions in the vicinity of H105 for heme stability and identifies D102 as having a key role in NO activation following breakage of the iron-His bond.
一氧化氮(NO)通过激活含血红素的可溶性鸟苷酸环化酶(sGC),参与心血管和神经元系统的生理和病理生理学。最近的结构研究使人们更好地理解了决定 NO 与血红素亲和力和结合的残基,以及血红素铁与 sGCβ亚基组氨酸 105(H105)之间键的断裂。然而,血红素-组氨酸键的断裂如何转化为依赖 NO 的催化增加仍不清楚。在各种状态下对同源 H-NOX 结构域的结构研究表明,αF 螺旋中包含 H105 的运动起着作用。我们对血红素结合结构域的建模突出了 H105 附近保守的残基,这些残基可能调节αF 螺旋的移动程度,或者在与 H105 的共价键断裂后传播激活信号。这些包括αF 螺旋残基天冬氨酸 102(D102)与 F120 的骨架氮之间的直接相互作用。该区域的突变分析表明,H105 附近的相互作用对于血红素的稳定性至关重要,并确定 D102 在铁-组氨酸键断裂后 NO 激活中起关键作用。