Suppr超能文献

探测可溶性鸟苷酸环化酶中的结构域相互作用。

Probing domain interactions in soluble guanylate cyclase.

机构信息

Department of Molecular and Cell Biology, University of California-Berkeley, CA 94720, USA.

出版信息

Biochemistry. 2011 May 24;50(20):4281-90. doi: 10.1021/bi200341b. Epub 2011 May 3.

Abstract

Eukaryotic nitric oxide (NO) signaling involves modulation of cyclic GMP (cGMP) levels through activation of the soluble isoform of guanylate cyclase (sGC). sGC is a heterodimeric hemoprotein that contains a Heme-Nitric oxide and OXygen binding (H-NOX) domain, a Per/ARNT/Sim (PAS) domain, a coiled-coil (CC) domain, and a catalytic domain. To evaluate the role of these domains in regulating the ligand binding properties of the heme cofactor of NO-sensitive sGC, we constructed chimeras by swapping the rat β1 H-NOX domain with the homologous region of H-NOX domain-containing proteins from Thermoanaerobacter tengcongensis, Vibrio cholerae, and Caenorhabditis elegans (TtTar4H, VCA0720, and Gcy-33, respectively). Characterization of ligand binding by electronic absorption and resonance Raman spectroscopy indicates that the other rat sGC domains influence the bacterial and worm H-NOX domains. Analysis of cGMP production in these proteins reveals that the chimeras containing bacterial H-NOX domains exhibit guanylate cyclase activity, but this activity is not influenced by gaseous ligand binding to the heme cofactor. The rat-worm chimera containing the atypical sGC Gcy-33 H-NOX domain was weakly activated by NO, CO, and O(2), suggesting that atypical guanylate cyclases and NO-sensitive guanylate cyclases have a common molecular mechanism for enzyme activation. To probe the influence of the other sGC domains on the mammalian sGC heme environment, we generated heme pocket mutants (Pro118Ala and Ile145Tyr) in the β1 H-NOX construct (residues 1-194), the β1 H-NOX-PAS-CC construct (residues 1-385), and the full-length α1β1 sGC heterodimer (β1 residues 1-619). Spectroscopic characterization of these proteins shows that interdomain communication modulates the coordination state of the heme-NO complex and the heme oxidation rate. Taken together, these findings have important implications for the allosteric mechanism of regulation within H-NOX domain-containing proteins.

摘要

真核生物一氧化氮(NO)信号转导通过激活可溶性鸟苷酸环化酶(sGC)来调节环鸟苷酸(cGMP)水平。sGC 是一种异源二聚体血红素蛋白,包含一个血红素-NO 和氧结合(H-NOX)结构域、一个 Per/ARNT/Sim(PAS)结构域、一个卷曲螺旋(CC)结构域和一个催化结构域。为了评估这些结构域在调节 NO 敏感 sGC 血红素辅因子配体结合特性中的作用,我们通过交换来自 Thermoanaerobacter tengcongensis、霍乱弧菌和秀丽隐杆线虫的 H-NOX 结构域同源区域,构建了嵌合体大鼠β1 H-NOX 结构域与 Thermoanaerobacter tengcongensis、霍乱弧菌和秀丽隐杆线虫(TtTar4H、VCA0720 和 Gcy-33,分别)中的 H-NOX 结构域包含蛋白。通过电子吸收和共振拉曼光谱对配体结合的表征表明,其他大鼠 sGC 结构域影响细菌和蠕虫 H-NOX 结构域。对这些蛋白质中环鸟苷酸生成的分析表明,含有细菌 H-NOX 结构域的嵌合体具有鸟苷酸环化酶活性,但这种活性不受血红素辅因子与气态配体结合的影响。含有非典型 sGC Gcy-33 H-NOX 结构域的大鼠-蠕虫嵌合体被 NO、CO 和 O(2) 弱激活,表明非典型鸟苷酸环化酶和 NO 敏感鸟苷酸环化酶具有共同的酶激活分子机制。为了探测其他 sGC 结构域对哺乳动物 sGC 血红素环境的影响,我们在β1 H-NOX 构建体(残基 1-194)、β1 H-NOX-PAS-CC 构建体(残基 1-385)和全长α1β1 sGC 异源二聚体(β1 残基 1-619)中生成了血红素口袋突变体(Pro118Ala 和 Ile145Tyr)。这些蛋白质的光谱特征表明,结构域间的通讯调节血红素-NO 配合物的配位状态和血红素氧化速率。总之,这些发现对 H-NOX 结构域包含蛋白的变构调节机制具有重要意义。

相似文献

1
Probing domain interactions in soluble guanylate cyclase.
Biochemistry. 2011 May 24;50(20):4281-90. doi: 10.1021/bi200341b. Epub 2011 May 3.
3
Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6777-82. doi: 10.1073/pnas.1301934110. Epub 2013 Apr 9.
6
Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase.
Protein Sci. 2013 Oct;22(10):1439-44. doi: 10.1002/pro.2331. Epub 2013 Sep 7.
8
The Influence of Nitric Oxide on Soluble Guanylate Cyclase Regulation by Nucleotides: ROLE OF THE PSEUDOSYMMETRIC SITE.
J Biol Chem. 2015 Jun 19;290(25):15570-15580. doi: 10.1074/jbc.M115.641431. Epub 2015 Apr 23.
9
Insights into the distal heme pocket of H-NOX using fluoride as a probe for H-bonding interactions.
J Inorg Biochem. 2013 Sep;126:91-5. doi: 10.1016/j.jinorgbio.2013.05.012. Epub 2013 Jun 3.
10
Incorporation of tyrosine and glutamine residues into the soluble guanylate cyclase heme distal pocket alters NO and O2 binding.
J Biol Chem. 2010 Jun 4;285(23):17471-8. doi: 10.1074/jbc.M109.098269. Epub 2010 Mar 15.

引用本文的文献

1
Oxidative Activation of the Heme Nitric Oxide/Oxygen-Binding Protein (H-NOX) from .
Biochemistry. 2025 Aug 5;64(15):3345-3357. doi: 10.1021/acs.biochem.5c00262. Epub 2025 Jul 27.
3
Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network.
PLoS Genet. 2016 Jul 26;12(7):e1006153. doi: 10.1371/journal.pgen.1006153. eCollection 2016 Jul.
4
Single-particle EM reveals the higher-order domain architecture of soluble guanylate cyclase.
Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2960-5. doi: 10.1073/pnas.1400711111. Epub 2014 Feb 10.
6
CO, NO and O as Vibrational Probes of Heme Protein Interactions.
Coord Chem Rev. 2013 Jan 15;257(2):511-527. doi: 10.1016/j.ccr.2012.05.008. Epub 2012 Jun 6.
7
Heme-assisted S-nitrosation desensitizes ferric soluble guanylate cyclase to nitric oxide.
J Biol Chem. 2012 Dec 14;287(51):43053-62. doi: 10.1074/jbc.M112.393892. Epub 2012 Oct 23.

本文引用的文献

1
Probing soluble guanylate cyclase activation by CO and YC-1 using resonance Raman spectroscopy.
Biochemistry. 2010 May 11;49(18):3815-23. doi: 10.1021/bi902214j.
2
Incorporation of tyrosine and glutamine residues into the soluble guanylate cyclase heme distal pocket alters NO and O2 binding.
J Biol Chem. 2010 Jun 4;285(23):17471-8. doi: 10.1074/jbc.M109.098269. Epub 2010 Mar 15.
3
A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation.
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19753-60. doi: 10.1073/pnas.0911645106. Epub 2009 Nov 16.
4
Resonance Raman spectra of an O2-binding H-NOX domain reveal heme relaxation upon mutation.
Biochemistry. 2009 Sep 15;48(36):8568-77. doi: 10.1021/bi900563g.
5
Nucleotide regulation of soluble guanylate cyclase substrate specificity.
Biochemistry. 2009 Aug 11;48(31):7519-24. doi: 10.1021/bi900696x.
6
Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases.
Neuron. 2009 Mar 26;61(6):865-79. doi: 10.1016/j.neuron.2009.02.013.
7
Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics.
Pharmacol Ther. 2009 Jun;122(3):216-38. doi: 10.1016/j.pharmthera.2009.02.009. Epub 2009 Mar 21.
8
cGMP signalling in the mammalian brain: role in synaptic plasticity and behaviour.
Handb Exp Pharmacol. 2009(191):549-79. doi: 10.1007/978-3-540-68964-5_24.
9
cGMP and cGMP-dependent protein kinase in platelets and blood cells.
Handb Exp Pharmacol. 2009(191):533-48. doi: 10.1007/978-3-540-68964-5_23.
10
cGMP in the vasculature.
Handb Exp Pharmacol. 2009(191):447-67. doi: 10.1007/978-3-540-68964-5_19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验