Suppr超能文献

脂肪酸与环氧合酶-2结合的结构基础。

Structural basis of fatty acid substrate binding to cyclooxygenase-2.

机构信息

Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, USA.

出版信息

J Biol Chem. 2010 Jul 16;285(29):22152-63. doi: 10.1074/jbc.M110.119867. Epub 2010 May 12.

Abstract

The cyclooxygenases (COX-1 and COX-2) are membrane-associated heme-containing homodimers that generate prostaglandin H(2) from arachidonic acid (AA). Although AA is the preferred substrate, other fatty acids are oxygenated by these enzymes with varying efficiencies. We determined the crystal structures of AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) bound to Co(3+)-protoporphyrin IX-reconstituted murine COX-2 to 2.1, 2.4, and 2.65 A, respectively. AA, EPA, and docosahexaenoic acid bind in different conformations in each monomer constituting the homodimer in their respective structures such that one monomer exhibits nonproductive binding and the other productive binding of the substrate in the cyclooxygenase channel. The interactions identified between protein and substrate when bound to COX-1 are conserved in our COX-2 structures, with the only notable difference being the lack of interaction of the carboxylate of AA and EPA with the side chain of Arg-120. Leu-531 exhibits a different side chain conformation when the nonproductive and productive binding modes of AA are compared. Unlike COX-1, mutating this residue to Ala, Phe, Pro, or Thr did not result in a significant loss of activity or substrate binding affinity. Determination of the L531F:AA crystal structure resulted in AA binding in the same global conformation in each monomer. We speculate that the mobility of the Leu-531 side chain increases the volume available at the opening of the cyclooxygenase channel and contributes to the observed ability of COX-2 to oxygenate a broad spectrum of fatty acid and fatty ester substrates.

摘要

环氧化酶(COX-1 和 COX-2)是膜结合的血红素同二聚体,可将花生四烯酸(AA)转化为前列腺素 H2。尽管 AA 是首选底物,但这些酶也能以不同的效率氧化其他脂肪酸。我们确定了 AA、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)与 Co(3+)-原卟啉 IX 重建的鼠 COX-2 的晶体结构,分辨率分别为 2.1、2.4 和 2.65Å。AA、EPA 和 DHA 在各自结构中构成同源二聚体的每个单体中以不同的构象结合,使得一个单体表现出非生产性结合,而另一个单体则在环氧化酶通道中具有生产性结合底物。当结合到 COX-1 时,在 COX-2 结构中保守的蛋白质和底物之间的相互作用,唯一明显的区别是 AA 和 EPA 的羧酸盐与 Arg-120 侧链之间没有相互作用。与非生产性和生产性结合模式相比,Leu-531 表现出不同的侧链构象。与 COX-1 不同,将该残基突变为 Ala、Phe、Pro 或 Thr 不会导致活性或底物结合亲和力显著丧失。确定 L531F:AA 晶体结构导致 AA 在每个单体中以相同的整体构象结合。我们推测 Leu-531 侧链的可动性增加了环氧化酶通道开口处的可用体积,并有助于 COX-2 氧合广泛的脂肪酸和脂肪酸酯底物的观察能力。

相似文献

1
Structural basis of fatty acid substrate binding to cyclooxygenase-2.
J Biol Chem. 2010 Jul 16;285(29):22152-63. doi: 10.1074/jbc.M110.119867. Epub 2010 May 12.
2
Structure of eicosapentaenoic and linoleic acids in the cyclooxygenase site of prostaglandin endoperoxide H synthase-1.
J Biol Chem. 2001 Oct 5;276(40):37547-55. doi: 10.1074/jbc.M105982200. Epub 2001 Jul 27.
3
Investigating substrate promiscuity in cyclooxygenase-2: the role of Arg-120 and residues lining the hydrophobic groove.
J Biol Chem. 2012 Jul 13;287(29):24619-30. doi: 10.1074/jbc.M112.372243. Epub 2012 May 25.
4
Arg-513 and Leu-531 Are Key Residues Governing Time-Dependent Inhibition of Cyclooxygenase-2 by Aspirin and Celebrex.
Biochemistry. 2019 Sep 24;58(38):3990-4002. doi: 10.1021/acs.biochem.9b00659. Epub 2019 Sep 9.
5
The structural basis of endocannabinoid oxygenation by cyclooxygenase-2.
J Biol Chem. 2011 Jun 10;286(23):20736-45. doi: 10.1074/jbc.M111.230367. Epub 2011 Apr 13.
7
Pre-existent asymmetry in the human cyclooxygenase-2 sequence homodimer.
J Biol Chem. 2013 Oct 4;288(40):28641-55. doi: 10.1074/jbc.M113.505503. Epub 2013 Aug 16.

引用本文的文献

3
"Elucidating the immunomodulatory role of endocannabinoids in intervertebral disc degeneration".
Eur Spine J. 2025 Jan;34(1):308-315. doi: 10.1007/s00586-024-08550-w. Epub 2024 Nov 14.
4
Cardiovascular Disease and miRNAs: Possible Oxidative Stress-Regulating Roles of miRNAs.
Antioxidants (Basel). 2024 May 27;13(6):656. doi: 10.3390/antiox13060656.
5
An adaptable ensemble model of the arachidonic acid cascade.
Mol Omics. 2024 Aug 12;20(7):453-468. doi: 10.1039/d3mo00187c.
6
Pharmacology activity, toxicity, and clinical trials of Erythrina genus plants (Fabaceae): an evidence-based review.
Front Pharmacol. 2023 Nov 16;14:1281150. doi: 10.3389/fphar.2023.1281150. eCollection 2023.
8
Defining the Conformational Ensembles Associated with Ligand Binding to Cyclooxygenase-2.
Biochemistry. 2023 Nov 7;62(21):3134-3144. doi: 10.1021/acs.biochem.3c00341. Epub 2023 Oct 18.
9
Current Insights into the Use of Probiotics and Fatty Acids in Alleviating Depression.
Microorganisms. 2023 Aug 5;11(8):2018. doi: 10.3390/microorganisms11082018.
10
Synthesis and In Vitro Biological Evaluation of -Carborane-Based Di--butylphenol Analogs.
Molecules. 2023 Jun 4;28(11):4547. doi: 10.3390/molecules28114547.

本文引用的文献

2
The origin of allosteric functional modulation: multiple pre-existing pathways.
Structure. 2009 Aug 12;17(8):1042-50. doi: 10.1016/j.str.2009.06.008.
3
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
4
Cyclooxygenase Allosterism, Fatty Acid-mediated Cross-talk between Monomers of Cyclooxygenase Homodimers.
J Biol Chem. 2009 Apr 10;284(15):10046-55. doi: 10.1074/jbc.M808634200. Epub 2009 Feb 12.
5
Prostanoids in health and disease.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S423-8. doi: 10.1194/jlr.R800094-JLR200. Epub 2008 Dec 17.
6
Cyclooxygenases: structural and functional insights.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S29-34. doi: 10.1194/jlr.R800042-JLR200. Epub 2008 Oct 23.
8
Collaborative Computational Project, number 4: providing programs for protein crystallography.
Methods Enzymol. 1997;277:620-33. doi: 10.1016/s0076-6879(97)77034-4.
9
Allostery: absence of a change in shape does not imply that allostery is not at play.
J Mol Biol. 2008 Apr 18;378(1):1-11. doi: 10.1016/j.jmb.2008.02.034. Epub 2008 Feb 29.
10
Nutritionally essential fatty acids and biologically indispensable cyclooxygenases.
Trends Biochem Sci. 2008 Jan;33(1):27-37. doi: 10.1016/j.tibs.2007.09.013. Epub 2007 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验