Suppr超能文献

环氧合酶-2对内源性大麻素加氧的结构基础。

The structural basis of endocannabinoid oxygenation by cyclooxygenase-2.

机构信息

Department of Structural Biology, Hauptman-Woodward Medical Research Institute,The State University of New York, Buffalo, New York 14203, USA.

出版信息

J Biol Chem. 2011 Jun 10;286(23):20736-45. doi: 10.1074/jbc.M111.230367. Epub 2011 Apr 13.

Abstract

The cyclooxygenases (COX-1 and COX-2) oxygenate arachidonic acid (AA) in the committed step of prostaglandin biogenesis. Substitutions of I434V, H513R, and I523V constitute the only differences in residues lining the cyclooxygenase channel between COX-1 and COX-2. These changes create a hydrophobic pocket in COX-2, with Arg-513 located at the base of the pocket, which has been exploited in the design of COX-2-selective inhibitors. Previous studies have shown that COX-2, but not COX-1, can oxygenate endocannabinoid substrates, including 2-arachidonoyl glycerol (2-AG). To investigate the isoform-specific structural basis of endocannabinoid binding to COX-2, we determined the crystal structure of the 2-AG isomer 1-arachidonoyl glycerol (1-AG) in complex with wild type and R513H murine (mu) COX-2 to 2.2 and 2.35 Å, respectively, and R513H muCOX-2 in complex with AA to 2.45 Å resolution. The 2,3-dihydroxypropyl moiety of 1-AG binds near the opening of the cyclooxygenase channel in the space vacated by the movement of the Leu-531 side chain, validating our previous hypothesis implicating the flexibility of the Leu-531 side chain as a determinant for the ability of COX-2 to oxygenate endocannabinoid substrates. Functional analyses carried out to compliment our structural findings indicated that Y355F and R513H muCOX-2 constructs had no effect on the oxygenation of 1-AG and 2-AG, whereas substitutions that resulted in a shortened side chain for Leu-531 had only modest effects. Both AA and 1-AG bind to R513H muCOX-2 in conformations similar to those observed in the co-crystal structures of these substrates with wild type enzyme.

摘要

环氧化酶(COX-1 和 COX-2)在前列腺素生物合成的关键步骤中将花生四烯酸(AA)氧化。COX-1 和 COX-2 之间,仅有位于环氧化酶通道的残基 lining 存在差异,其中包括 I434V、H513R 和 I523V 取代。这些变化在 COX-2 中形成了一个疏水性口袋,口袋的底部是 Arg-513,这在 COX-2 选择性抑制剂的设计中得到了利用。先前的研究表明,COX-2 而不是 COX-1 可以氧化内源性大麻素底物,包括 2-花生四烯酰甘油(2-AG)。为了研究内源性大麻素与 COX-2 结合的同工型特异性结构基础,我们分别将 2-AG 异构体 1-花生四烯酰甘油(1-AG)与野生型和 R513H 鼠(mu)COX-2 的晶体结构确定至 2.2 和 2.35 Å,以及 R513H muCOX-2 与 AA 的晶体结构确定至 2.45 Å 分辨率。1-AG 的 2,3-二羟丙基部分结合在环氧化酶通道开口附近,填补了 Leu-531 侧链移动后留下的空间,验证了我们之前的假设,即 Leu-531 侧链的柔性是 COX-2 氧化内源性大麻素底物能力的决定因素。为了补充我们的结构发现而进行的功能分析表明,Y355F 和 R513H muCOX-2 构建体对 1-AG 和 2-AG 的氧化没有影响,而导致 Leu-531 侧链缩短的取代则只有适度的影响。AA 和 1-AG 都以与野生型酶中观察到的这些底物的共晶结构类似的构象结合到 R513H muCOX-2 上。

相似文献

1
The structural basis of endocannabinoid oxygenation by cyclooxygenase-2.
J Biol Chem. 2011 Jun 10;286(23):20736-45. doi: 10.1074/jbc.M111.230367. Epub 2011 Apr 13.
2
Amino acid determinants in cyclooxygenase-2 oxygenation of the endocannabinoid anandamide.
Biochemistry. 2003 Aug 5;42(30):9041-9. doi: 10.1021/bi034471k.
4
Investigating substrate promiscuity in cyclooxygenase-2: the role of Arg-120 and residues lining the hydrophobic groove.
J Biol Chem. 2012 Jul 13;287(29):24619-30. doi: 10.1074/jbc.M112.372243. Epub 2012 May 25.
5
Amino acid determinants in cyclooxygenase-2 oxygenation of the endocannabinoid 2-arachidonylglycerol.
J Biol Chem. 2001 Aug 10;276(32):30072-7. doi: 10.1074/jbc.M104467200. Epub 2001 Jun 11.
6
(R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2.
Nat Chem Biol. 2011 Nov;7(11):803-9. doi: 10.1038/nchembio.663.
7
Competition and allostery govern substrate selectivity of cyclooxygenase-2.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12366-71. doi: 10.1073/pnas.1507307112. Epub 2015 Sep 21.
8
The structure of NS-398 bound to cyclooxygenase-2.
J Struct Biol. 2011 Nov;176(2):254-8. doi: 10.1016/j.jsb.2011.07.019. Epub 2011 Aug 6.
9
Assay of Endocannabinoid Oxidation by Cyclooxygenase-2.
Methods Mol Biol. 2016;1412:205-15. doi: 10.1007/978-1-4939-3539-0_21.
10
Structural basis of fatty acid substrate binding to cyclooxygenase-2.
J Biol Chem. 2010 Jul 16;285(29):22152-63. doi: 10.1074/jbc.M110.119867. Epub 2010 May 12.

引用本文的文献

1
Uterine stromal but not epithelial PTGS2 is critical for murine pregnancy success.
Reproduction. 2025 Mar 3;169(4). doi: 10.1530/REP-24-0408. Print 2025 Apr 1.
2
Uterine stromal but not epithelial PTGS2 is critical for murine pregnancy success.
bioRxiv. 2024 Oct 26:2024.10.24.620133. doi: 10.1101/2024.10.24.620133.
3
In Vitro COX Inhibitory Activity, LC-MS Analysis and Molecular Docking Study of Silene vulgaris and Stellaria media.
Cell Biochem Biophys. 2025 Mar;83(1):1009-1020. doi: 10.1007/s12013-024-01533-0. Epub 2024 Sep 24.
4
Defining the Conformational Ensembles Associated with Ligand Binding to Cyclooxygenase-2.
Biochemistry. 2023 Nov 7;62(21):3134-3144. doi: 10.1021/acs.biochem.3c00341. Epub 2023 Oct 18.
5
Learning from Nature: From a Marine Natural Product to Synthetic Cyclooxygenase-1 Inhibitors by Automated De Novo Design.
Adv Sci (Weinh). 2021 Aug;8(16):e2100832. doi: 10.1002/advs.202100832. Epub 2021 Jun 27.
6
The Biosynthesis of Enzymatically Oxidized Lipids.
Front Endocrinol (Lausanne). 2020 Nov 19;11:591819. doi: 10.3389/fendo.2020.591819. eCollection 2020.
7
Harmaline Analogs as Substrate-Selective Cyclooxygenase-2 Inhibitors.
ACS Med Chem Lett. 2020 Feb 14;11(10):1881-1885. doi: 10.1021/acsmedchemlett.9b00555. eCollection 2020 Oct 8.
8
Structural and Chemical Biology of the Interaction of Cyclooxygenase with Substrates and Non-Steroidal Anti-Inflammatory Drugs.
Chem Rev. 2020 Aug 12;120(15):7592-7641. doi: 10.1021/acs.chemrev.0c00215. Epub 2020 Jul 1.
9
Arg-513 and Leu-531 Are Key Residues Governing Time-Dependent Inhibition of Cyclooxygenase-2 by Aspirin and Celebrex.
Biochemistry. 2019 Sep 24;58(38):3990-4002. doi: 10.1021/acs.biochem.9b00659. Epub 2019 Sep 9.

本文引用的文献

1
Structural basis of fatty acid substrate binding to cyclooxygenase-2.
J Biol Chem. 2010 Jul 16;285(29):22152-63. doi: 10.1074/jbc.M110.119867. Epub 2010 May 12.
2
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
3
Cyclooxygenase Allosterism, Fatty Acid-mediated Cross-talk between Monomers of Cyclooxygenase Homodimers.
J Biol Chem. 2009 Apr 10;284(15):10046-55. doi: 10.1074/jbc.M808634200. Epub 2009 Feb 12.
4
Prostanoids in health and disease.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S423-8. doi: 10.1194/jlr.R800094-JLR200. Epub 2008 Dec 17.
5
Cyclooxygenases: structural and functional insights.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S29-34. doi: 10.1194/jlr.R800042-JLR200. Epub 2008 Oct 23.
6
The COXIB experience: a look in the rearview mirror.
Annu Rev Pharmacol Toxicol. 2009;49:265-90. doi: 10.1146/annurev.pharmtox.011008.145638.
8
Collaborative Computational Project, number 4: providing programs for protein crystallography.
Methods Enzymol. 1997;277:620-33. doi: 10.1016/s0076-6879(97)77034-4.
9
Endogenous cannabinoids: structure and metabolism.
J Neuroendocrinol. 2008 May;20 Suppl 1:1-9. doi: 10.1111/j.1365-2826.2008.01676.x.
10
Non-redundant functions of cyclooxygenases: oxygenation of endocannabinoids.
J Biol Chem. 2008 Mar 28;283(13):8065-9. doi: 10.1074/jbc.R800005200. Epub 2008 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验