Suppr超能文献

红外纳米光谱学揭示了植物木质部导水细胞中pit 膜的化学性质。

Infrared Nanospectroscopy Reveals the Chemical Nature of Pit Membranes in Water-Conducting Cells of the Plant Xylem.

机构信息

Department of Plant Biology, Institute of Biology, University of Campinas, 13083-970 Campinas, Sao Paulo, Brazil.

Ulm University, Institute of Systematic Botany and Ecology, 89081 Ulm, Germany.

出版信息

Plant Physiol. 2018 Aug;177(4):1629-1638. doi: 10.1104/pp.18.00138. Epub 2018 Jun 5.

Abstract

In the xylem of angiosperm plants, microscopic pits through the secondary cell walls connect the water-conducting vessels. Cellulosic meshes originated from primary walls, and middle lamella between adjacent vessels, called the pit membrane, separates one conduit from another. The intricate structure of the nano-sized pores in pit membranes enables the passage of water under negative pressure without hydraulic failure due to obstruction by gas bubbles (i.e. embolism) under normal conditions or mild drought stress. Since the chemical composition of pit membranes affects embolism formation and bubble behavior, we directly measured pit membrane composition in wood. Here, we characterized the chemical composition of cell wall structures by synchrotron infrared nanospectroscopy and atomic force microscopy-infrared nanospectroscopy with high spatial resolution. Characteristic peaks of cellulose, phenolic compounds, and proteins were found in the intervessel pit membranes of wood. In addition, the vessel to parenchyma pit membranes and developing cell walls of the vascular cambium showed clear signals of cellulose, proteins, and pectin. We did not find a distinct peak of lignin and other compounds in these structures. Our investigation of the complex chemical composition of intervessel pit membranes furthers our understanding of the flow of water and bubbles between neighboring conduits. The advances presented here pave the way for further label-free studies related to the nanochemistry of plant cell components.

摘要

在被子植物的木质部中,通过次生细胞壁的微观凹陷将输水容器连接起来。纤维素网格起源于初生壁,而相邻导管之间的中层称为凹陷膜,将一个导管与另一个导管隔开。凹陷膜纳米级孔隙的复杂结构使得在负压下可以通过水而不会因正常条件下或轻度干旱胁迫下气泡(即栓塞)阻塞而导致水力失效。由于凹陷膜的化学成分会影响栓塞形成和气泡行为,因此我们直接测量了木材中的凹陷膜成分。在这里,我们通过同步加速器红外纳米光谱和原子力显微镜-红外纳米光谱以高空间分辨率对细胞壁结构的化学成分进行了表征。在木材的导管间凹陷膜中发现了纤维素、酚类化合物和蛋白质的特征峰。此外,导管到木质部薄壁组织的凹陷膜和维管形成层的发育细胞壁显示出纤维素、蛋白质和果胶的清晰信号。在这些结构中,我们没有发现木质素和其他化合物的明显峰。我们对导管间凹陷膜复杂化学成分的研究增进了我们对相邻导管之间水流和气泡流动的理解。这里提出的进展为与植物细胞成分纳米化学相关的进一步无标记研究铺平了道路。

相似文献

1
Infrared Nanospectroscopy Reveals the Chemical Nature of Pit Membranes in Water-Conducting Cells of the Plant Xylem.
Plant Physiol. 2018 Aug;177(4):1629-1638. doi: 10.1104/pp.18.00138. Epub 2018 Jun 5.
2
From the sap's perspective: The nature of vessel surfaces in angiosperm xylem.
Am J Bot. 2018 Feb;105(2):172-185. doi: 10.1002/ajb2.1034. Epub 2018 Mar 8.
6
A model of bubble growth leading to xylem conduit embolism.
J Theor Biol. 2007 Nov 7;249(1):111-23. doi: 10.1016/j.jtbi.2007.05.033. Epub 2007 Jun 2.
7
Linking irradiance-induced changes in pit membrane ultrastructure with xylem vulnerability to cavitation.
Plant Cell Environ. 2011 Mar;34(3):501-13. doi: 10.1111/j.1365-3040.2010.02258.x. Epub 2010 Dec 30.
9
Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem?
New Phytol. 2011 Jan;189(1):218-28. doi: 10.1111/j.1469-8137.2010.03448.x. Epub 2010 Sep 14.

引用本文的文献

1
Applications of synchrotron light in seed research: an array of x-ray and infrared imaging methodologies.
Front Plant Sci. 2025 Feb 17;15:1395952. doi: 10.3389/fpls.2024.1395952. eCollection 2024.
2
Review on the Structure-Property Relationship of Lignocellulosic Materials Measured by Atomic Force Microscopy.
Biomacromolecules. 2025 Mar 10;26(3):1404-1418. doi: 10.1021/acs.biomac.4c01278. Epub 2025 Feb 13.
3
Exploring Lignification Complexity in Plant Cell Walls with Airyscan Super-resolution Microscopy and Bioorthogonal Chemistry.
Chem Biomed Imaging. 2023 Jul 6;1(5):479-487. doi: 10.1021/cbmi.3c00052. eCollection 2023 Aug 28.
4
Synchrotron nano-FTIR spectroscopy for probing anticancer drugs at subcellular scale.
Sci Rep. 2024 Jul 26;14(1):17166. doi: 10.1038/s41598-024-67386-y.
6
Synchrotron infrared nanospectroscopy in fourth-generation storage rings.
J Synchrotron Radiat. 2024 May 1;31(Pt 3):547-556. doi: 10.1107/S1600577524002364. Epub 2024 Apr 17.
8
Correlated mechanochemical maps of primary cell walls using atomic force microscope infrared spectroscopy.
Quant Plant Biol. 2022 Dec 23;3:e31. doi: 10.1017/qpb.2022.20. eCollection 2022.
9
Review: Advanced Atomic Force Microscopy Modes for Biomedical Research.
Biosensors (Basel). 2022 Dec 2;12(12):1116. doi: 10.3390/bios12121116.
10
Revealing the structural and chemical properties of copper-based nanoparticles released from copper treated wood.
RSC Adv. 2022 Apr 11;12(18):11391-11401. doi: 10.1039/d2ra01196d. eCollection 2022 Apr 7.

本文引用的文献

1
Low-aberration beamline optics for synchrotron infrared nanospectroscopy.
Opt Express. 2018 Apr 30;26(9):11238-11249. doi: 10.1364/OE.26.011238.
2
From the sap's perspective: The nature of vessel surfaces in angiosperm xylem.
Am J Bot. 2018 Feb;105(2):172-185. doi: 10.1002/ajb2.1034. Epub 2018 Mar 8.
3
Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates.
Plant Cell Environ. 2017 Oct;40(10):2133-2146. doi: 10.1111/pce.13014. Epub 2017 Aug 30.
7
Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory.
Plant Physiol. 2017 Feb;173(2):1177-1196. doi: 10.1104/pp.16.01039. Epub 2016 Dec 7.
9
Drought-induced xylem pit membrane damage in aspen and balsam poplar.
Plant Cell Environ. 2016 Oct;39(10):2210-20. doi: 10.1111/pce.12782. Epub 2016 Jul 30.
10
Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry.
Nano Lett. 2016 Jan 13;16(1):55-61. doi: 10.1021/acs.nanolett.5b02730. Epub 2015 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验