Suppr超能文献

线粒体铁代谢及其在神经退行性变中的作用。

Mitochondrial iron metabolism and its role in neurodegeneration.

机构信息

Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Alzheimers Dis. 2010;20 Suppl 2(Suppl 2):S551-68. doi: 10.3233/JAD-2010-100354.

Abstract

In addition to their well-established role in providing the cell with ATP, mitochondria are the source of iron-sulfur clusters (ISCs) and heme - prosthetic groups that are utilized by proteins throughout the cell in various critical processes. The post-transcriptional system that mammalian cells use to regulate intracellular iron homeostasis depends, in part, upon the synthesis of ISCs in mitochondria. Thus, proper mitochondrial function is crucial to cellular iron homeostasis. Many neurodegenerative diseases are marked by mitochondrial impairment, brain iron accumulation, and oxidative stress - pathologies that are inter-related. This review discusses the physiological role that mitochondria play in cellular iron homeostasis and, in so doing, attempts to clarify how mitochondrial dysfunction may initiate and/or contribute to iron dysregulation in the context of neurodegenerative disease. We review what is currently known about the entry of iron into mitochondria, the ways in which iron is utilized therein, and how mitochondria are integrated into the system of iron homeostasis in mammalian cells. Lastly, we turn to recent advances in our understanding of iron dysregulation in two neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), and discuss the use of iron chelation as a potential therapeutic approach to neurodegenerative disease.

摘要

除了在为细胞提供 ATP 方面的既定作用外,线粒体还是铁硫簇(ISC)和血红素 - 辅基的来源,这些辅基在细胞内的各种关键过程中被各种蛋白质利用。哺乳动物细胞用来调节细胞内铁稳态的转录后系统部分依赖于线粒体中 ISC 的合成。因此,适当的线粒体功能对于细胞内铁稳态至关重要。许多神经退行性疾病的特征是线粒体损伤、脑铁积累和氧化应激 - 这些病理学相互关联。这篇综述讨论了线粒体在细胞内铁稳态中的生理作用,并试图阐明线粒体功能障碍如何在神经退行性疾病的背景下引发和/或导致铁失调。我们回顾了目前已知的铁进入线粒体的方式、铁在其中的利用方式以及线粒体如何整合到哺乳动物细胞的铁稳态系统中的情况。最后,我们转向对两种神经退行性疾病(阿尔茨海默病和帕金森病)中铁失调的最新理解,并讨论了使用铁螯合作为神经退行性疾病的潜在治疗方法。

相似文献

1
Mitochondrial iron metabolism and its role in neurodegeneration.
J Alzheimers Dis. 2010;20 Suppl 2(Suppl 2):S551-68. doi: 10.3233/JAD-2010-100354.
2
Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders.
Mitochondrion. 2015 Mar;21:92-105. doi: 10.1016/j.mito.2015.02.001. Epub 2015 Feb 8.
3
Mitochondrial iron metabolism and neurodegenerative diseases.
Neurotoxicology. 2022 Jan;88:88-101. doi: 10.1016/j.neuro.2021.11.003. Epub 2021 Nov 5.
4
Review: iron metabolism and the role of iron in neurodegenerative disorders.
Neuropathol Appl Neurobiol. 2014 Apr;40(3):240-57. doi: 10.1111/nan.12096.
5
Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling.
Acta Neuropathol Commun. 2021 Jul 7;9(1):124. doi: 10.1186/s40478-021-01224-4.
6
Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond.
Cells. 2021 Aug 25;10(9):2198. doi: 10.3390/cells10092198.
7
The neurodegenerative mitochondriopathies.
J Alzheimers Dis. 2009;17(4):737-51. doi: 10.3233/JAD-2009-1095.
8
Does cellular iron dysregulation play a causative role in Parkinson's disease?
Ageing Res Rev. 2004 Jul;3(3):327-43. doi: 10.1016/j.arr.2004.01.003.
9
Iron dysregulation and neurodegeneration: the molecular connection.
Mol Interv. 2006 Apr;6(2):89-97. doi: 10.1124/mi.6.2.6.
10
Reactive oxygen species: stuck in the middle of neurodegeneration.
J Alzheimers Dis. 2010;20 Suppl 2:S357-67. doi: 10.3233/JAD-2010-100498.

引用本文的文献

1
Ferroptosis in Cancer and Inflammatory Diseases: Mechanisms and Therapeutic Implications.
MedComm (2020). 2025 Sep 3;6(9):e70349. doi: 10.1002/mco2.70349. eCollection 2025 Sep.
2
Iron mishandling in the brain and periphery in Parkinson's disease.
NPJ Parkinsons Dis. 2025 Aug 18;11(1):246. doi: 10.1038/s41531-025-01089-7.
3
Multiplexed quantum sensing reveals coordinated thermomagnetic regulation of mitochondria.
bioRxiv. 2025 Aug 1:2025.07.30.666664. doi: 10.1101/2025.07.30.666664.
5
6
Deciphering ferroptosis in critical care: mechanisms, consequences, and therapeutic opportunities.
Front Immunol. 2024 Dec 16;15:1511015. doi: 10.3389/fimmu.2024.1511015. eCollection 2024.
7
Age-related changes in the architecture and biochemical markers levels in motor-related cortical areas of SHR rats-an ADHD animal model.
Front Mol Neurosci. 2024 Aug 23;17:1414457. doi: 10.3389/fnmol.2024.1414457. eCollection 2024.

本文引用的文献

2
Oligodendrogenesis: the role of iron.
Biofactors. 2010 Mar-Apr;36(2):98-102. doi: 10.1002/biof.90.
4
Alzheimer's disease.
N Engl J Med. 2010 Jan 28;362(4):329-44. doi: 10.1056/NEJMra0909142.
5
Iron as a cause of Parkinson disease - a myth or a well established hypothesis?
Parkinsonism Relat Disord. 2009 Dec;15 Suppl 3:S212-4. doi: 10.1016/S1353-8020(09)70817-X.
6
Iron-sulfur proteins in health and disease.
Trends Endocrinol Metab. 2010 May;21(5):302-14. doi: 10.1016/j.tem.2009.12.006. Epub 2010 Jan 8.
7
How iron controls iron.
Cell Metab. 2009 Dec;10(6):439-41. doi: 10.1016/j.cmet.2009.11.005.
8
Role of hepcidin in murine brain iron metabolism.
Cell Mol Life Sci. 2010 Jan;67(1):123-33. doi: 10.1007/s00018-009-0167-3. Epub 2009 Nov 8.
9
Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16263-8. doi: 10.1073/pnas.0904519106. Epub 2009 Sep 4.
10
An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.
Science. 2009 Oct 30;326(5953):722-6. doi: 10.1126/science.1176326. Epub 2009 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验