Kashem Md Shakil Bin, Varnum Stella, Lazorik Olivia, Giwa Rocky, Iyer Shiva, Yao Changyu, Piston David W, Zu Chong, Brestoff Jonathan R, Mukherji Shankar
Department of Physics, Washington University, St. Louis, MO 63130, USA.
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
bioRxiv. 2025 Aug 1:2025.07.30.666664. doi: 10.1101/2025.07.30.666664.
Mitochondria are multifunctional organelles that convert the potential energy stored in nutrients and intermediary metabolites into both heat and an electrochemical proton-motive force. However, how these outputs are synchronized in cells remains an enduring question. In this work, leveraging multiplexed nanodiamond quantum sensors to monitor both changes in temperature and magnetic field fluctuations in single primary cells obtained from diverse tissues in adult mice, we identified thermomagnetic correlation profiles uncovering a regulatory feedback loop in which the cell draws upon available intracellular iron to maintain the mitochondrial electrochemical gradient. These profiles reverse in cells derived from a mouse model of Leigh syndrome and raise the intriguing possibility that primary mitochondrial diseases can be understood as disorders of thermomagnetic homeostasis.
线粒体是多功能细胞器,可将营养物质和中间代谢产物中储存的势能转化为热量和电化学质子动力。然而,这些输出在细胞中如何同步仍是一个长期存在的问题。在这项研究中,我们利用多重纳米金刚石量子传感器来监测成年小鼠不同组织来源的单个原代细胞中的温度变化和磁场波动,识别出热磁相关图谱,揭示了一个调节反馈回路,即细胞利用细胞内可用的铁来维持线粒体电化学梯度。这些图谱在来自 Leigh 综合征小鼠模型的细胞中发生逆转,这增加了一种有趣的可能性,即原发性线粒体疾病可被理解为热磁稳态紊乱。