Cardiology Division, Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR.
Europace. 2010 Aug;12(8):1178-87. doi: 10.1093/europace/euq120. Epub 2010 May 14.
A better understanding of the ionic mechanisms for cardiac automaticity can lead to better strategies for engineering bio-artificial pacemakers. Here, we attempted to better define the relative contribution of I(f) and I(K1) in the generation of spontaneous action potentials (SAPs) in cardiomyocytes (CMs).
Monolayers of neonatal rat ventricular myocytes (NRVMs) were transduced with a recombinant adenovirus (Ad) to express a gating-engineered HCN1 construct (HCN1-DeltaDeltaDelta) for patch-clamp and multielectrode array (MEA) recordings. Single NRVMs exhibited a bi-phasic response in the generation of SAPs (62.6 +/- 17.4 b.p.m., Days 1-2; 194.3 +/- 12.3 b.p.m., Days 3-4; 73% quiescent, Days 9-10). Although automaticity time-dependently decreased and subsequently ceased, I(f) remained fairly stable (-5.2 +/- 1.1 pA/pF, Days 1-2; -5.1 +/- 1.4 pA/pF, Days 7-8; -4.3 +/- 1.3 pA/pF, Days 13-14). In contrast, I(K1) declined rapidly (from -16.9 +/- 2.7 pA/pF on Days 1-2 to -4.4 +/- 1.6 pA/pF on Days 5-6). Maximum diastolic potential/resting membrane potential (r = 0.89) and action potential duration at 50% (APD(50), r = 0.73) and 90% (APD(90), r = 0.75) but not the firing rate (r = -0.3) were positively correlated to the I(K1). Similarly, monolayer NRVMs ceased to spontaneously fire after long-term culture. Ad-HCN1-DeltaDeltaDelta transduction restored pacing in silenced individual and monolayer NRVMs but with reduced conduction velocity and field potential amplitude.
We conclude that the combination of I(K1) and I(f) primes CMs for bio-artificial pacing by determining the threshold. However, I(f) functions as a membrane potential oscillator to determine the basal firing frequency. Future engineering of automaticity in the multicellular setting needs to have conduction taken into consideration.
更好地了解心脏自律性的离子机制可以为生物人工起搏器的工程设计提供更好的策略。在这里,我们试图更好地定义 I(f)和 I(K1)在心肌细胞 (CMs)产生自发性动作电位 (SAP)中的相对贡献。
通过重组腺病毒 (Ad)转导新生大鼠心室肌细胞 (NRVM)的单层,以表达门控工程 HCN1 构建体 (HCN1-DeltaDeltaDelta)进行膜片钳和多电极阵列 (MEA)记录。单个 NRVM 表现出 SAP 产生的双相反应 (62.6 +/- 17.4 bpm,第 1-2 天; 194.3 +/- 12.3 bpm,第 3-4 天; 73%静止,第 9-10 天)。尽管自律性随时间逐渐降低并随后停止,但 I(f)仍相当稳定 (-5.2 +/- 1.1 pA/pF,第 1-2 天; -5.1 +/- 1.4 pA/pF,第 7-8 天; -4.3 +/- 1.3 pA/pF,第 13-14 天)。相比之下,I(K1)迅速下降 (从第 1-2 天的-16.9 +/- 2.7 pA/pF 降至第 5-6 天的-4.4 +/- 1.6 pA/pF)。最大舒张电位/静息膜电位 (r = 0.89)和动作电位时程 50% (APD(50),r = 0.73)和 90% (APD(90),r = 0.75),但不是发放率 (r = -0.3)与 I(K1)呈正相关。同样,NRVM 的单层长期培养后停止自发放电。Ad-HCN1-DeltaDeltaDelta 转导恢复了沉默的单个和单层 NRVM 的起搏,但传导速度和场电位幅度降低。
我们的结论是,I(K1)和 I(f)的组合通过确定阈值为生物人工起搏做好心肌细胞的准备。然而,I(f)作为膜电位振荡器,决定基础发放频率。在多细胞环境中对自动性进行的未来工程设计需要考虑到传导。