Suppr超能文献

图像匹配作为一种扩散过程:与麦克斯韦妖的类比。

Image matching as a diffusion process: an analogy with Maxwell's demons.

作者信息

Thirion J P

机构信息

INRIA, Equipe Epidaure, Sophia-Antipolis, France.

出版信息

Med Image Anal. 1998 Sep;2(3):243-60. doi: 10.1016/s1361-8415(98)80022-4.

Abstract

In this paper, we present the concept of diffusing models to perform image-to-image matching. Having two images to match, the main idea is to consider the objects boundaries in one image as semi-permeable membranes and to let the other image, considered as a deformable grid model, diffuse through these interfaces, by the action of effectors situated within the membranes. We illustrate this concept by an analogy with Maxwell's demons. We show that this concept relates to more traditional ones, based on attraction, with an intermediate step being optical flow techniques. We use the concept of diffusing models to derive three different non-rigid matching algorithms, one using all the intensity levels in the static image, one using only contour points, and a last one operating on already segmented images. Finally, we present results with synthesized deformations and real medical images, with applications to heart motion tracking and three-dimensional inter-patients matching.

摘要

在本文中,我们提出了扩散模型的概念来执行图像到图像的匹配。有两张要匹配的图像,主要思想是将一幅图像中的物体边界视为半透膜,并让另一幅被视为可变形网格模型的图像,通过位于膜内的效应器的作用,扩散通过这些界面。我们通过与麦克斯韦妖的类比来说明这一概念。我们表明,这个概念与基于吸引力的更传统的概念相关,中间步骤是光流技术。我们使用扩散模型的概念推导出三种不同的非刚性匹配算法,一种使用静态图像中的所有强度级别,一种仅使用轮廓点,最后一种在已经分割的图像上运行。最后,我们展示了合成变形和真实医学图像的结果,以及在心脏运动跟踪和三维患者间匹配中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验