Takahashi Naoya, Sasaki Takuya, Matsumoto Wataru, Matsuki Norio, Ikegaya Yuji
Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10244-9. doi: 10.1073/pnas.0914594107. Epub 2010 May 17.
Spike synchronization underlies information processing and storage in the brain. But how can neurons synchronize in a noisy network? By exploiting a high-speed (500-2,000 fps) multineuron imaging technique and a large-scale synapse mapping method, we directly compared spontaneous activity patterns and anatomical connectivity in hippocampal CA3 networks ex vivo. As compared to unconnected pairs, synaptically coupled neurons shared more common presynaptic neurons, received more correlated excitatory synaptic inputs, and emitted synchronized spikes with approximately 10(7) times higher probability. Importantly, common presynaptic parents per se synchronized more than unshared upstream neurons. Consistent with this, dynamic-clamp stimulation revealed that common inputs alone could not account for the realistic degree of synchronization unless presynaptic spikes synchronized among common parents. On a macroscopic scale, network activity was coordinated by a power-law scaling of synchronization, which engaged varying sets of densely interwired (thus highly synchronized) neuron groups. Thus, locally coherent activity converges on specific cell assemblies, thereby yielding complex ensemble dynamics. These segmentally synchronized pulse packets may serve as information modules that flow in associatively parallel network channels.
尖峰同步是大脑中信息处理和存储的基础。但神经元如何在嘈杂的网络中实现同步呢?通过利用高速(500 - 2000帧/秒)多神经元成像技术和大规模突触映射方法,我们直接比较了离体海马CA3网络中的自发活动模式和解剖学连接性。与未连接的神经元对相比,突触耦合的神经元共享更多共同的突触前神经元,接收更多相关的兴奋性突触输入,并且发射同步尖峰的概率高出约10^7倍。重要的是,共同的突触前母细胞本身比非共享的上游神经元同步性更高。与此一致的是,动态钳制刺激表明,仅共同输入无法解释实际的同步程度,除非突触前尖峰在共同母细胞之间同步。在宏观尺度上,网络活动通过同步的幂律缩放进行协调,这涉及不同组紧密相互连接(因此高度同步)的神经元群。因此,局部相干活动汇聚到特定的细胞集合上,从而产生复杂的整体动力学。这些分段同步的脉冲包可能作为信息模块,在关联并行的网络通道中流动。