Daria Vincent R, Castañares Michael Lawrence, Bachor Hans-A
Research School of Physics, The Australian National University, Canberra, Australia.
John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
Biophys Rev. 2021 Feb 23;13(1):13-33. doi: 10.1007/s12551-021-00780-2. eCollection 2021 Feb.
The challenge to understand the complex neuronal circuit functions in the mammalian brain has brought about a revolution in light-based neurotechnologies and optogenetic tools. However, while recent seminal works have shown excellent insights on the processing of basic functions such as sensory perception, memory, and navigation, understanding more complex brain functions is still unattainable with current technologies. We are just scratching the surface, both literally and figuratively. Yet, the path towards fully understanding the brain is not totally uncertain. Recent rapid technological advancements have allowed us to analyze the processing of signals within dendritic arborizations of single neurons and within neuronal circuits. Understanding the circuit dynamics in the brain requires a good appreciation of the spatial and temporal properties of neuronal activity. Here, we assess the spatio-temporal parameters of neuronal responses and match them with suitable light-based neurotechnologies as well as photochemical and optogenetic tools. We focus on the spatial range that includes dendrites and certain brain regions (e.g., cortex and hippocampus) that constitute neuronal circuits. We also review some temporal characteristics of some proteins and ion channels responsible for certain neuronal functions. With the aid of the photochemical and optogenetic markers, we can use light to visualize the circuit dynamics of a functioning brain. The challenge to understand how the brain works continue to excite scientists as research questions begin to link macroscopic and microscopic units of brain circuits.
理解哺乳动物大脑中复杂神经元回路功能的挑战推动了基于光的神经技术和光遗传学工具的革命。然而,尽管最近的一些开创性研究在诸如感官知觉、记忆和导航等基本功能的处理方面展现了卓越的见解,但利用当前技术仍无法理解更复杂的大脑功能。我们只是刚刚触及皮毛,无论是从字面意义还是比喻意义上来说。然而,全面理解大脑的道路并非完全没有头绪。最近的快速技术进步使我们能够分析单个神经元树突分支内以及神经元回路中的信号处理过程。理解大脑中的回路动态需要充分认识神经元活动的空间和时间特性。在此,我们评估神经元反应的时空参数,并将它们与合适的基于光的神经技术以及光化学和光遗传学工具相匹配。我们关注的空间范围包括构成神经元回路的树突和某些脑区(如皮层和海马体)。我们还回顾了一些负责特定神经元功能的蛋白质和离子通道的时间特性。借助光化学和光遗传学标记,我们可以利用光来可视化功能正常的大脑的回路动态。随着研究问题开始将大脑回路的宏观和微观单元联系起来,理解大脑如何工作的挑战继续激发着科学家们的兴趣。