Meenan Nicola A G, Sharma Amit, Fleishman Sarel J, Macdonald Colin J, Morel Bertrand, Boetzel Ruth, Moore Geoffrey R, Baker David, Kleanthous Colin
Department of Biology, P.O. Box 373, University of York, York, YO10 5YW, United Kingdom.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10080-5. doi: 10.1073/pnas.0910756107. Epub 2010 May 17.
High-affinity, high-selectivity protein-protein interactions that are critical for cell survival present an evolutionary paradox: How does selectivity evolve when acquired mutations risk a lethal loss of high-affinity binding? A detailed understanding of selectivity in such complexes requires structural information on weak, noncognate complexes which can be difficult to obtain due to their transient and dynamic nature. Using NMR-based docking as a guide, we deployed a disulfide-trapping strategy on a noncognate complex between the colicin E9 endonuclease (E9 DNase) and immunity protein 2 (Im2), which is seven orders of magnitude weaker binding than the cognate femtomolar E9 DNase-Im9 interaction. The 1.77 A crystal structure of the E9 DNase-Im2 complex reveals an entirely noncovalent interface where the intersubunit disulfide merely supports the crystal lattice. In combination with computational alanine scanning of interfacial residues, the structure reveals that the driving force for binding is so strong that a severely unfavorable specificity contact is tolerated at the interface and as a result the complex becomes weakened through "frustration." As well as rationalizing past mutational and thermodynamic data, comparing our noncognate structure with previous cognate complexes highlights the importance of loop regions in developing selectivity and accentuates the multiple roles of buried water molecules that stabilize, ameliorate, or aggravate interfacial contacts. The study provides direct support for dual-recognition in colicin DNase-Im protein complexes and shows that weakened noncognate complexes are primed for high-affinity binding, which can be achieved by economical mutation of a limited number of residues at the interface.
对于细胞存活至关重要的高亲和力、高选择性蛋白质-蛋白质相互作用存在一个进化悖论:当获得的突变有可能导致高亲和力结合的致命丧失时,选择性是如何进化的?要详细了解此类复合物中的选择性,需要关于弱的、非同源复合物的结构信息,由于其瞬态和动态性质,这些信息可能难以获得。以基于核磁共振的对接为指导,我们对大肠杆菌素E9核酸内切酶(E9 DNase)与免疫蛋白2(Im2)之间的非同源复合物采用了二硫键捕获策略,该复合物的结合力比同源的飞摩尔级E9 DNase-Im9相互作用弱七个数量级。E9 DNase-Im2复合物的1.77埃晶体结构揭示了一个完全非共价的界面,其中亚基间二硫键仅支持晶格。结合对界面残基的计算丙氨酸扫描,该结构表明结合驱动力非常强,以至于界面处一个严重不利的特异性接触被容忍,结果复合物因“受挫”而变弱。除了对过去的突变和热力学数据进行合理化解释外,将我们的非同源结构与先前的同源复合物进行比较,突出了环区域在发展选择性方面的重要性,并强调了埋藏水分子在稳定、改善或加剧界面接触方面的多种作用。该研究为大肠杆菌素DNase-Im蛋白复合物中的双重识别提供了直接支持,并表明弱化的非同源复合物为高亲和力结合做好了准备,这可以通过对界面处有限数量的残基进行经济的突变来实现。