Aharon Lidan, Aharoni Shay-Lee, Radisky Evette S, Papo Niv
Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida, U.S.A.
Biochem J. 2020 May 15;477(9):1701-1719. doi: 10.1042/BCJ20200188.
To facilitate investigations of protein-protein interactions (PPIs), we developed a novel platform for quantitative mapping of protein binding specificity landscapes, which combines the multi-target screening of a mutagenesis library into high- and low-affinity populations with sophisticated next-generation sequencing analysis. Importantly, this method generates accurate models to predict affinity and specificity values for any mutation within a protein complex, and requires only a few experimental binding affinity measurements using purified proteins for calibration. We demonstrated the utility of the approach by mapping quantitative landscapes for interactions between the N-terminal domain of the tissue inhibitor of metalloproteinase 2 (N-TIMP2) and three matrix metalloproteinases (MMPs) having homologous structures but different affinities (MMP-1, MMP-3, and MMP-14). The binding landscapes for N-TIMP2/MMP-1 and N-TIMP2/MMP-3 showed the PPIs to be almost fully optimized, with most single mutations giving a loss of affinity. In contrast, the non-optimized PPI for N-TIMP2/MMP-14 was reflected in a wide range of binding affinities, where single mutations exhibited a far more attenuated effect on the PPI. Our new platform reliably and comprehensively identified not only hot- and cold-spot residues, but also specificity-switch mutations that shape target affinity and specificity. Thus, our approach provides a methodology giving an unprecedentedly rich quantitative analysis of the binding specificity landscape, which will broaden the understanding of the mechanisms and evolutionary origins of specific PPIs and facilitate the rational design of specific inhibitors for structurally similar target proteins.
为了便于对蛋白质-蛋白质相互作用(PPI)进行研究,我们开发了一种用于蛋白质结合特异性图谱定量绘制的新型平台,该平台将诱变文库的多靶点筛选与复杂的下一代测序分析相结合,以区分高亲和力和低亲和力群体。重要的是,该方法能够生成准确的模型,用于预测蛋白质复合物中任何突变的亲和力和特异性值,并且仅需要使用纯化蛋白进行几次实验性结合亲和力测量来进行校准。我们通过绘制金属蛋白酶组织抑制剂2(N-TIMP2)的N端结构域与三种具有同源结构但亲和力不同的基质金属蛋白酶(MMPs,即MMP-1、MMP-3和MMP-14)之间相互作用的定量图谱,证明了该方法的实用性。N-TIMP2/MMP-1和N-TIMP2/MMP-3的结合图谱显示,其PPI几乎完全优化,大多数单突变会导致亲和力丧失。相比之下,N-TIMP2/MMP-14的非优化PPI体现在广泛的结合亲和力范围内,其中单突变对PPI的影响要小得多。我们的新平台不仅可靠且全面地识别了热点和冷点残基,还识别了影响靶点亲和力和特异性的特异性转换突变。因此,我们的方法提供了一种能够对结合特异性图谱进行前所未有的丰富定量分析的方法,这将拓宽对特定PPI的机制和进化起源的理解,并有助于合理设计针对结构相似靶点蛋白的特异性抑制剂。