Suppr超能文献

在各向同性细胞铺展过程中控制细胞大小和形状的机制。

Mechanisms controlling cell size and shape during isotropic cell spreading.

机构信息

Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA.

出版信息

Biophys J. 2010 May 19;98(10):2136-46. doi: 10.1016/j.bpj.2010.01.059.

Abstract

Cell motility is important for many developmental and physiological processes. Motility arises from interactions between physical forces at the cell surface membrane and the biochemical reactions that control the actin cytoskeleton. To computationally analyze how these factors interact, we built a three-dimensional stochastic model of the experimentally observed isotropic spreading phase of mammalian fibroblasts. The multiscale model is composed at the microscopic levels of three actin filament remodeling reactions that occur stochastically in space and time, and these reactions are regulated by the membrane forces due to membrane surface resistance (load) and bending energy. The macroscopic output of the model (isotropic spreading of the whole cell) occurs due to the movement of the leading edge, resulting solely from membrane force-constrained biochemical reactions. Numerical simulations indicate that our model qualitatively captures the experimentally observed isotropic cell-spreading behavior. The model predicts that increasing the capping protein concentration will lead to a proportional decrease in the spread radius of the cell. This prediction was experimentally confirmed with the use of Cytochalasin D, which caps growing actin filaments. Similarly, the predicted effect of actin monomer concentration was experimentally verified by using Latrunculin A. Parameter variation analyses indicate that membrane physical forces control cell shape during spreading, whereas the biochemical reactions underlying actin cytoskeleton dynamics control cell size (i.e., the rate of spreading). Thus, during cell spreading, a balance between the biochemical and biophysical properties determines the cell size and shape. These mechanistic insights can provide a format for understanding how force and chemical signals together modulate cellular regulatory networks to control cell motility.

摘要

细胞运动对于许多发育和生理过程都很重要。运动源于细胞膜表面物理力与控制肌动蛋白细胞骨架的生化反应之间的相互作用。为了在计算上分析这些因素如何相互作用,我们构建了一个哺乳动物成纤维细胞实验观察到的各向同性扩展相的三维随机模型。该多尺度模型由三个肌动蛋白丝重排反应的微观水平组成,这些反应在空间和时间上随机发生,并且这些反应受到由于膜表面阻力(负载)和弯曲能量的膜力的调节。模型的宏观输出(整个细胞的各向同性扩展)是由于前缘的运动而产生的,仅由于膜力约束的生化反应而产生。数值模拟表明,我们的模型定性地捕捉了实验观察到的各向同性细胞扩展行为。该模型预测,增加封端蛋白浓度将导致细胞扩展半径成比例减小。使用细胞松弛素 D 进行的实验证实了这一预测,细胞松弛素 D 可以封端生长中的肌动蛋白丝。同样,使用 Latrunculin A 验证了肌动蛋白单体浓度的预测效果。参数变化分析表明,在扩展过程中,膜物理力控制细胞形状,而肌动蛋白细胞骨架动力学的生化反应控制细胞大小(即扩展速度)。因此,在细胞扩展过程中,生化和生物物理特性之间的平衡决定了细胞的大小和形状。这些机制上的见解可以为理解力和化学信号如何共同调节细胞调节网络以控制细胞运动提供一种格式。

相似文献

1
Mechanisms controlling cell size and shape during isotropic cell spreading.
Biophys J. 2010 May 19;98(10):2136-46. doi: 10.1016/j.bpj.2010.01.059.
3
Force transmission in migrating cells.
J Cell Biol. 2010 Jan 25;188(2):287-97. doi: 10.1083/jcb.200906139.
4
Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading.
PLoS One. 2008;3(11):e3735. doi: 10.1371/journal.pone.0003735. Epub 2008 Nov 17.
6
Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis.
J Biomech. 1995 Dec;28(12):1471-84. doi: 10.1016/0021-9290(95)00095-x.
7
Dynamic phase transitions in cell spreading.
Phys Rev Lett. 2004 Sep 3;93(10):108105. doi: 10.1103/PhysRevLett.93.108105. Epub 2004 Sep 2.
8
Membrane waves driven by actin and Myosin.
Phys Rev Lett. 2007 Apr 20;98(16):168103. doi: 10.1103/PhysRevLett.98.168103.
9
Emergence of large-scale cell morphology and movement from local actin filament growth dynamics.
PLoS Biol. 2007 Sep;5(9):e233. doi: 10.1371/journal.pbio.0050233.
10
Polarization and movement of keratocytes: a multiscale modelling approach.
Bull Math Biol. 2006 Jul;68(5):1169-211. doi: 10.1007/s11538-006-9131-7. Epub 2006 Jun 23.

引用本文的文献

1
Cell-TIMP: Cellular Trajectory Inference based on Morphological Parameter.
bioRxiv. 2024 Apr 22:2024.04.18.590109. doi: 10.1101/2024.04.18.590109.
2
Biophysical Modeling of Actin-Mediated Structural Plasticity Reveals Mechanical Adaptation in Dendritic Spines.
eNeuro. 2024 Mar 11;11(3). doi: 10.1523/ENEURO.0497-23.2024. Print 2024 Mar.
3
Mechanisms of frustrated phagocytic spreading of human neutrophils on antibody-coated surfaces.
Biophys J. 2022 Dec 6;121(23):4714-4728. doi: 10.1016/j.bpj.2022.10.016. Epub 2022 Oct 14.
5
Exploring new roles for actin upon LTP induction in dendritic spines.
Sci Rep. 2021 Mar 29;11(1):7072. doi: 10.1038/s41598-021-86367-z.
6
Pattern formation in reaction-diffusion system on membrane with mechanochemical feedback.
Sci Rep. 2020 Nov 11;10(1):19582. doi: 10.1038/s41598-020-76695-x.
7
Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation.
PLoS Comput Biol. 2020 May 7;16(5):e1007611. doi: 10.1371/journal.pcbi.1007611. eCollection 2020 May.
9
A unique role for clathrin light chain A in cell spreading and migration.
J Cell Sci. 2019 May 15;132(10):jcs224030. doi: 10.1242/jcs.224030.
10
Universal Kinetics of the Onset of Cell Spreading on Substrates of Different Stiffness.
Biophys J. 2019 Feb 5;116(3):551-559. doi: 10.1016/j.bpj.2018.12.020. Epub 2019 Jan 5.

本文引用的文献

1
The shape of motile cells.
Curr Biol. 2009 Sep 15;19(17):R762-71. doi: 10.1016/j.cub.2009.06.053.
2
Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading.
PLoS One. 2008;3(11):e3735. doi: 10.1371/journal.pone.0003735. Epub 2008 Nov 17.
3
Mathematical models and simulations of cellular processes based on actin filaments.
J Biol Chem. 2009 Feb 27;284(9):5433-7. doi: 10.1074/jbc.R800043200. Epub 2008 Oct 20.
4
Stochastic simulation of actin dynamics reveals the role of annealing and fragmentation.
J Theor Biol. 2008 May 7;252(1):173-83. doi: 10.1016/j.jtbi.2008.01.001. Epub 2008 Jan 11.
5
Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model.
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7086-91. doi: 10.1073/pnas.0701943104. Epub 2007 Apr 17.
6
The universal dynamics of cell spreading.
Curr Biol. 2007 Apr 17;17(8):694-9. doi: 10.1016/j.cub.2007.02.058. Epub 2007 Mar 22.
7
Mechanics and dynamics of actin-driven thin membrane protrusions.
Biophys J. 2006 Jan 1;90(1):65-76. doi: 10.1529/biophysj.105.071480. Epub 2005 Oct 7.
8
The physics of filopodial protrusion.
Biophys J. 2005 Aug;89(2):782-95. doi: 10.1529/biophysj.104.056515. Epub 2005 May 6.
9
Dynamic phase transitions in cell spreading.
Phys Rev Lett. 2004 Sep 3;93(10):108105. doi: 10.1103/PhysRevLett.93.108105. Epub 2004 Sep 2.
10
Periodic lamellipodial contractions correlate with rearward actin waves.
Cell. 2004 Feb 6;116(3):431-43. doi: 10.1016/s0092-8674(04)00058-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验